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Parameter Estimation and Evaluation Introduction to Hypothesis Testing

Introduction to Hypothesis Testing

9

Question: Given a realization x™ of a random sample X"
from the population distribution f(z,8), we would also like to
know whether the true parameter value 6y belongs to some
specific subset ©( of the parameter space ©.
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Introduction to Hypothesis Testing

Example 1 (9.1) [Return to Education]

Let 6 measure the change in hourly wage given another year
of education, holding all other factors fixed. Labor economists
are interested in testing whether the return to education, con-
trolling other factors, is zero. That is, whether or not 6 equal
to zero.
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Introduction to Hypothesis Testing

Definition 1 (9.1) [Hypothesis]

A hypothesis is a statement about the population or some
attributes of the population distribution. The two comple-
mentary hypotheses in a hypothesis testing problem are called
the null hypothesis and the alternative hypothesis, denoted by
Hy and H 4 respectively.
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Introduction to Hypothesis Testing

e A null hypothesis is a statement about the population or some at-
tributes of the population. The alternative hypothesis is that the
statement in the null hypothesis is false.

e The goal of hypothesis testing is to decide, based on an observed data
set x" generated from a population, which of two complementary hy-
potheses is true.

e Suppose a random sample X" is generated from a population distri-
bution f(x,#) with some unknown value of parameter § € O, where
O is a known finite-dimensional parameter space. In hypothesis test-
ing, the parameter space © is divided into two mutually exclusive and

collectively exhaustive subsets Oy and © 4, namely Oy N © 4 = J and
OoUB,4 = 6.
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Introduction to Hypothesis Testing

e The problem is to determine to which of these two subsets the true
value of 6 belongs. That is, based upon an observed data set x", one
is trying to choose between the two hypotheses

Hy : 8 € ©¢

Versus

Hy:0 € ©4.

e The first hypothesis Hy is called the null hypothesis, and the second,
H 4, is called the alternative hypothesis.

e Hj is called the “null” hypothesis because it is often stated as “no
effects” or “no relationship”. One example, is Hy : § = 0 versus
Hy4 : 6 £ 0, as is the case of Example 9.1.
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Introduction to Hypothesis Testing

Example 2 (9.2) [Constant Return to Scale Hypothesis]

A production function
Y =F(L,K)

tells how much output Y to produce using inputs of labor L
and capital K. A production technology is said to display a
constant return to scale if the output increases by the same
proportion as the inputs increase; that is, for all A > 0,

AF(L,K) = F(A\L,\K).
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Introduction to Hypothesis Testing

Example 3 (9.3) [Constant Return to Scale Hypothesis]

Suppose a production function is given by
Y = AK“L".

where Y is the output, K and L are the capital and labor
inputs, A is a constant, and # = («, 3) is a parameter vector.
Then the constant return to scale hypothesis can be stated as

H()Z()d—l—,BZL

The alternative hypothesis Hy : a4+ 8 # 1 consists of two
cases: a+ 3 > 1 and a + 8 < 1, which imply an increasing
return to scale and a decreasing return to scale respectively.
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Introduction to Hypothesis Testing

e The hypotheses can be divided into two basic categories—
simple hypotheses and composite hypotheses.
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Introduction to Hypothesis Testing

Definition 2 (9.2) [Simple Hypothesis Versus Composite Hypothesis]

A hypothesis is simple if and only if it contains exactly one
population. If the hypothesis contains more than one popula-
tion, it is called a composite hypothesis.

Remarks

In Example 9.1, Hj contains only one parameter value,
so Hy is a simple hypothesis. In contrast, the null hy-
potheses in Examples 9.2 and 9.3 contain more than one
parameter values, so they are composite hypotheses.
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Introduction to Hypothesis Testing

Definition 3 (9.3) [Hypothesis Testing]

A hypothesis testing procedure or a hypothesis test is a deci-
sion rule that specifies

e (1) for what sample values x™ the decision is made to
accept Hp as true, and

e (2) for what sample values x™ Hj is rejected and H 4 is
accepted as true.
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Introduction to Hypothesis Testing

e The key to the construction of the decision rule for a
hypothesis testing procedure is to determine the rules of
rejection or acceptance of the null hypothesis.

Hypothesis Testing Introduction to Statistics and Econometrics July 7, 2020 13/110



Parameter Estimation and Evaluation Introduction to Hypothesis Testing

Introduction to Hypothesis Testing

Definition 4 (9.4) [Critical Region or Rejection Region]

The set C of the sample points of the random sample X" for
which H will be rejected is called the rejection region or
critical region. The complement of the rejection region is
called the acceptance region.
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Introduction to Hypothesis Testing

e A standard approach to hypothesis testing is to choose a statistic T'(X")
and use it to divide the sample space of X" into two mutually exclusive and
exhaustive regions

A,(c) ={x":T(x") <c}

and

Cu(c) ={x" : T(x") > ¢}
for some prespecified constant c.

e The first region, A,,(c), is the acceptance region, and the second, C,,(¢), is the
rejection region. The cutoff point c is called the critical value and 7'(X")
is called a test statistic.

e An important issue in hypothesis testing is to determine a suitable value of
c given a data set x". In general, we need to know the sampling distribution
of T(X"™) under Hy in order to determine the threshold value c.
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Introduction to Hypothesis Testing

Example 4 (9.4)

Suppose X" is an IID N(u,0?) random sample, where p is
unknown but o? is known. We are interested in testing for
Hoy : = po versus Hy : o # po, where pg is a known number.
Here, ©g = {10} contains one parameter value py and O 4
contains all parameter values on the real line R except uy.
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Introduction to Hypothesis Testing

e To test the null hypothesis Hy : 4 = ug, we consider the
following test statistic

Xn_UO
o/\/n

T(X") =

where o is known.

e Under the null hypothesis Hg : 1 = g, we have

Xn — MO
o/\V/n
~ N(0,1).
ey mepeme e — 171110

T(X"™)
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Introduction to Hypothesis Testing

e Under Hy4 : p # uo,

T(X") ~ N (\/ﬁ(u — o) 1) |

o Y
which diverges to infinity with probability approaching

one as n — oAQ.

e One can accept Hy if |T(X™)] is large. How large T'(X™)
should be in order to be considered as “large” is deter-
mined by the sampling distribution (N(0,1)) of T(X™)
under Hy.
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Introduction to Hypothesis Testing

e Specifically, by setting ¢ = z, /2, where 2, /9 is the upper-
tailed critical value of N(0,1) at level § € (0,1), ie.,
P(Z > z4)2) = 5 where Z ~ N(0,1), we can define the
acceptance and rejection regions as follows:

% — A

Ln — HO
A (c) = <<x" - < za
) of/vn |7 2]
— )
Ln — HO
C,.(c) = <x":|=2 > Za p .
(0 \ o/ |~ F
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Introduction to Hypothesis Testing

e The N(0,1) test decision rule:
— (1) Accept Hy : t = o at the significance level « if
x" € Ay, (c);
— (2) Reject Hp : i = po at the significance level « if
x" € Cy(c).

e The significance level « is the probability that the
above decision rule will wrongly reject a correct null hy-
pothesis. This error is called the Type I error and is
unavoidable given any finite sample size n.
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Introduction to Hypothesis Testing

Definition 5 (9.5) [Power of Test]

If C is the rejection region of a test of the null hypothesis
Hy : 0 € Og, then the function 7(0) = Py(X™ € C) is called
the power of the test with the rejection region C, where Py(-)
is the probability measure when the random sample follows
the distribution fxn(x",0).
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Introduction to Hypothesis Testing

e The power function 7 () is the probability of rejecting
H.

e In Example 9.4, the power of the test statistic T'(X") =
vVn(X, — pg)/o is given by

Xn — MO

> Za/2 | -

o/ |~ 2)

m(p) =P (‘
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Introduction to Hypothesis Testing

Definition 6 (9.6) [Type | and Type Il Errors]

If Hy : 0 € ©g holds and the observed data x" falls into the
critical region C, then a Type I error is made. The probability
of making Type I error is

04(9) = Pg(Xn & C|H0)

If Hy : 0 € ©F holds and the observed data x™ is in the accep-
tance region, then a Type II error is made. The probability of
making Type II error is

B(O) = Py(X" € AlHy,)
1 — Pg(Xn c C’HA)
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Introduction to Hypothesis Testing

e Under Hy : 0 € Og, the power function 7 (#) is the proba-
bility of making Type I error, namely incorrectly reject-
ing a correct null hypothesis.

e Typelerrors are unavoidable because under H, because
a test statistic T(X™) may still take large values with
nontrivial (though small) probabilities.
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Introduction to Hypothesis Testing

e Under Hy : 0 € OF, the power function 7(8) is the prob-

ability of rejecting a false null hypothesis, and it is equal
to 1—3(60), where 3(0) is the probability of making Type
II error, namely accepting an false null hypothesis.

e A test is called unbiased if P[T'(X") > ¢|Ha] > P[T(X"™) >
c|Hp|. That is, the probability to reject Hy when Hy is
false is strictly larger than when it is true.
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Introduction to Hypothesis Testing

e There exists a tradeoff between Type I errors and Type
II errors given any sample size n. For any given n, if the
critical region C shrinks, the probability of making Type
I error deceases, but the probability of making Type II
error increases. Similarly, if the critical region C increases,
the Type II error () decreases, but Type I error ()
Increases.

e Usually, hypothesis tests are evaluated and compared through
their probabilities of making mistakes. The classical ap-
proach to hypothesis testing is to bound the probability of
Type I error by some value a € (0,1) over all values of 8 in
®p and to try to find a test that minimizes the probability
of a Type II error over all values of 6 in © 4.
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Introduction to Hypothesis Testing

Definition 7 (9.7) [Uniformly Most Powerful Test]

Let T be a class of tests for testing Hp : 0 € ©¢ versus Hy
0 € O4. A test T(X") in class T, with power function 7(6),
is a uniformly most powerful test over T if w(0) > 7 () for all

0 € ©,4, where 7(0) is the power function of any other test
G(X"™) in class T.
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Introduction to Hypothesis Testing

e Suppose for a test statistic T'(X™), P[T(X"™) > c|Hy| <
«. Then the value of a gives the maximum Type I error
for the test statistic 7'(X"), and is called the level of the

test.

o If T(X™) has level @ and P[T(X"™) > c|Hy| = «, then
the test is called a size a test. Obviously, the class of
level « tests contains the set of size « tests.
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Introduction to Hypothesis Testing

e Usually, we will choose T to be a class of tests with the
same level or same size a. In some complicated testing
situations, however, it may be computationally impos-
sible to construct a size « test. In such situations, a
researcher must be satisfied with a level « test, realizing
that some compromises may be made.

e An example is the so-called Bonferroni’s method, which
is used to address the problem of multiple comparisons
when we have k individual tests for the null hypothesis

H()Z
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Introduction to Hypothesis Testing

e Suppose for each ¢ € {1, -, k}, T;(X"™) is a level a/k
test for Hj, namely

P[T;(X™) > ¢;|Hp| < i=1,---k,

i
k ,

where ¢; is a critical value for T;(X").
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Introduction to Hypothesis Testing

e Then the maximum test statistic

TX) = oo XD

is a level a test, because

P[T(X") > c|Hy] = P | max T;(X") > CH()]
| 1<:<k

= P U {T:(X") > ¢} |Ho}

L 1=1

< ZP T;(X™) > c|Hp| = a,

where the inequality follows by Boole’s inequality.
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Introduction to Hypothesis Testing

e To test a economic hypothesis, we have to transform it
into a statistical hypothesis, and then test the statistical
hypothesis using an observed economic data.

e In transforming an economic hypothesis into a statisti-
cal hypothesis, some auxiliary assumptions are often im-
posed. This induces a gap between the original economic
hypothesis and the resulting statistical hypothesis.

e This gap may cause some problem in economic interpre-
tation of the empirical results on testing the statistical
hypothesis
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Introduction to Hypothesis Testing

Example 5 (9.5)[Efficient Market Hypothesis]

Suppose R; is the return on some asset or portfolio in time
period t, and I;_1 = (R;_1, Ri_2,- - -) denotes the historical
asset return information available at time ¢t — 1. The asset
market is called informationally weakly efficient if

E(Ri| ;1) = E(Ry).

That is, the historical asset return information has no predic-
tive power for future asset return.
To test this economic hypothesis, one can consider a linear

autoregressive model
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Introduction to Hypothesis Testing

Example 5 (9.5)[Efficient Market Hypothesis]

k
Rt = QQ + Z Oéth_j + Et,

g=1

where ¢ 1S a stochastic disturbance. Under the efficient market
hypothesis (EMH), we have

Hy: a1 =09 =+ =ar =0.
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Introduction to Hypothesis Testing

Example 5 (9.5)[Efficient Market Hypothesis]

If one has evidence that at least one «;, 7 € {1,---, k}, is not zero, it will
imply that the efficient market hypothesis holds.

However, when one does not reject the statistical hypothesis Hy, this does
not necessarily imply that the original economic hypothesis—the efficient
market hypothesis holds. The reason is that the linear autoregressive model
is just one of many (possibly infinite) ways to test predictability of the histor-
ical asset returns for future asset return. In other words, the predictability
may arise in a nonlinear manner. Therefore, there exists a gap between
the efficient market hypothesis and the statistical hypothesis Hy. Because
of this gap, when one does not reject Hy, one can only say that no evidence
against the efficient market hypothesis is found rather than conclude that
the efficient market hypothesis holds.
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Introduction to Hypothesis Testing

e There exists a gap between data predictability versus
model predictability.
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Neyman-Pearson Lemma

Theorem 1 (9.1) [Neyman-Pearson Lemma]

Consider testing a simple null hypothesis Hgy : 8 = 6y ver-
sus a simple alternative hypothesis H, : 6 = 6, where the
PMEF /PDF of the random sample X" corresponding to 6;,i €
{0,1}, is fx»(x™,0;). Suppose a test with rejection and ac-
ceptance regions C, (c¢) and A, (c) respectively is defined as
follows:
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Neyman-Pearson Lemma

Theorem 1 (9.1) [Neyman-Pearson Lemma]

0= Gy )

and

0= ) <)

for some constant ¢ > 0, and
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Neyman-Pearson Lemma

Theorem 1 (9.1) [Neyman-Pearson Lemma]

(b)
P[X" € C,(c)|Hp| = a.

Then

(1) [Sufficiency] Any test that satisfies conditions (a) and (b)
is a uniformly most powertul level o test.

(2) [Necessity] If there exists a test satisfying conditions (a)
and (b) with ¢ > 0, then every uniformly most powerful level
« test is a size « test (i.e., satisfying condition (b)), and every
uniformly most powerful level « test satisfies condition (a)

except perhaps on a set A in the sample space of X" satisfying
P(X™ e A|lHpy) = P(X"™ € A|H,4) = 0.
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Neyman-Pearson Lemma

ﬁroof:

\_

e Note that

P[X"

c G, (c)|Ho
= E{1[X" € Cu(c)]|Ho}

_ / 1[x" € Cp ()] (x™, o )dx",

where 1(-) is the indicator function.

~

To be Continued
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Neyman-Pearson Lemma

ﬁroof:

tions (a) and (b) is uniformly most powerful.

show that 77 (X") is not more powerful than 7'(X™).

is in the critical region C,,(c) of the test T'(X"™), and so fxn(x",60;)

T(X™), and so fxn(x",07) < cfxn(x",0y). In either case, we have:

{1[x" € C,,(c)] — 1[x™ € Cypl} [fxn (X", 01) — cfxn (X", 60)] > 0

e (1) We first show that a test (denoted as T'(X"™)) that satisfies condi-

Suppose there is another test (denoted 73 (X)) with £ {1[X" € Cy,||Hp} <
«. (The test T1(X") need not be a likelihood ratio test.) We shall

Observe that if 1[x" € C,(c)] > 1[x™ € Cy,], then the sample point x"

>
cfxn(X™,60p); on the other hand, if 1[x" € C,(c)] < 1[x"™ € Cy,],
then the sample point x” is in the acceptance region A, (c) of the test

~

\ To be Continued

Hypothesis Testing Introduction to Statistics and Econometrics July 7, 2020

42/110



Parameter Estimation and Evaluation Neyman-Pearson Lemma

Neyman-Pearson Lemma

Thus,

. {1[x" € Cp(c)] — 1[x" € Cy]} [fxn (X", 01) — cfxn (x",00)] dx" >0

This implies

\ To be Continued
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Neyman-Pearson Lemma

ﬁroof:

«, and ¢ > 0, we have
c | {1x" € C,(c)] — 1[x" € C1,]} fxn (X", 00)dx" > 0.
Rn

It follows that

. {1[x" € C,(c)] — 1[x" € Cy,]} fxn (x",01)dx"™ > 0,

which implies

P[Xn € Cn(C)|HA] > P[Xn S C1n|HA].

~

Because [p, 1[x" € Cy,] fxn (x™,00)dx" < o, [5,, 1[x" € Cp ()] fxn (X", 00)x™ =

That is, the test 77 (X") is not more powerful than 7'(X"™).
To be Continued
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Neyman-Pearson Lemma

e (2) Assume that T'(X") is a test that satisfies Conditions
(a) and (b) with ¢ > 0.

e (i) We first show that a uniformly most powerful level «
test (denoted as T»(X™)) is a size « test (i.e., satisfies

Condition (b)).

Suppose it is not a size « test. Then fRn 1[x" € Cop|fxn (X, 0y)dx"™ <
a. Given Condition (b) for the test T'(X"), we have
Jn 1[x"™ € Cp,(¢)] fxn (%™, 6p)dx™ = oIt follows that

{1[x" € C,(¢)] — 1[x" € Cay]} fxn(x",00)dx" > 0.

\ To be Continued
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Neyman-Pearson Lemma

Proof:

Observe that, if 1[x" € C,(c)] — 1[x" € Cg,] > 0, then x" is in the rejection
region C,,(c) of the test T'(X"), and so fxn»(x",01) > cfxn»(x",6y); if 1[x" €
Cn(c)] — 1[x™ € Cy,] < 0, then x™ is in the acceptance region A, (c) of the test
T(X™), and so fxn(x",01) < cfxn(x",0p). It follows that

[ B € Calo)] = 1" € Conl} [ (6" 01) = e (" 60)] " 2 0.

Therefore,
{1[x" € C,(¢)] — 1[x" € Ca,]} fxn (X", 01)dx"
Rn

> ¢ [ {1[x" € C,(c¢)] — 1[x" € Ca,]} fxn (x",00)dx"
RTL
> 0

given ¢ > 0. This implies P[X™ € C,(¢)|H4]| > P[X"™ € Co,]|H4], suggesting that
he test T5(X"™) is not uniformly most powerful, a contradiction. )
2(X") Y P To be Continued
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Neyman-Pearson Lemma

Proof:

e (ii) Next, we show that every uniformly most powerful level a test must
satisfy Conditions (a) and (b) except perhaps on a zero probability
set A in the sample space of X" satisfying P(X" € A|Hp) = P(X" €
A|H4) = 0. Suppose T*(X"™) is a most powerful level a test with the
rejection region C; . Because every most powertul test with level « is
a size « test, we have

n

f 1[x" € C ] fxn (X", 0p)dx" = a = / 1[x" € C,(c)]fxn(x",00)dx".

Also, both T'(X™) and T*(X"™) are most powerful tests, so they are
equally powerful under H 4, namely

(1[x" € Cpe)] — 1[x™ € CE} fxen (X, 01)dx™ = 0.
K To be Continued
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Neyman-Pearson Lemma

Thus

. {1[x" € C,(c)] — L[x" € CX]} [fxn (x™,01) — cfxn (X", 0p)] dx™ = 0.

Now, observe that if 1[x" € C,,(¢)]—1[x" € C] > 0, then x" must be in the
rejection region C,,(c) of the test T'(X™), and so fxn (x",01)—cfxn (X", 0y) >
0; if 1[x™ € C,,(¢)] — 1[x™ € C}] < 0, then x™ must be in the acceptance re-
gion of the test T'(X™), and so fxn (x",01)—cfxn(x™,60y) < 0. In both cases,
the product {1[x™ € C,(c)] — 1[x" € C:]} [fxn (x",01) — cfxn (x",00)] > 0.
Given that the integral of this nonnegative product is 0, we have that
1x" € C,(c)] — 1|x™ € C!] = 0 for all x™ in the sample space of X"
except for a set with zero probability. Therefore, the sets C and C,(c) are

id\entical except on the set of probability O. /
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Neyman-Pearson Lemma

e The Neyman-Pearson lemma provides a method of find-
ing a uniformly most powerful test when both the null
and the alternative are simple hypotheses.

e The likelihood ratio test is the uniformly most power-
ful test.

e However, when a hypothesis is composite, i.e., the hy-
pothesis contains more than one parameter value, the
lemma may not hold. See Hong and Lee (2013) for an
example.
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Neyman-Pearson Lemma

Corollary 1 (9.2) [Likelihood Ratio Test and Sufficient Statistics]

Suppose T'(X™) is a sufficient statistic for # and ¢(t, 6;) is the PMF /PDF
of T'(X™) corresponding to 6;,i € {0,1}. Then any test based on
T'(X™) with rejection region R,, is a uniformly most powerful level «
test for Hy : 6§ = 0y against H 4 : 0 = 6, if the test has the rejection
and acceptance regions

SO={ iy )

and

0=t iy =)

for some ¢ > 0, where P[T(X") € C,(c)|Hp] = «.
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Neyman-Pearson Lemma

e The likelihood ratio test based on the random sample
X" can be reduced to a likelihood ratio test based on
the sufficient statistic T(X"™) of # which remains to be
the uniformly most powerful test.

Hypothesis Testing Introduction to Statistics and Econometrics July 7, 2020 51/110



Parameter Estimation and Evaluation Neyman-Pearson Lemma

Neyman-Pearson Lemma

Example 6 (9.6)

Suppose X" is an IID random sample from an Exponential(6)
PDF f(z,0) = %e‘x/g for x > 0. Find a uniformly most
powerful level o test for Hy : @ = 1 versus H4 : 6 = 2.
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Neyman-Pearson Lemma

e The likelihood function of the random sample X" when x" is observed
is

fX” (Xnag) — H xz:
T

—na:n/Q
9 b

— — mn
where T, =n~' > " | x;.

e By the factorization theorem in Theorem 6.14, X,, is a sufficient statis-
tic for 6. Since the sum of IID exponential(f) random variables fol-

lows a Gamma(n 0) distribution, and so the sample mean X, ~
Gamma(n, ) Thus, its PDF

n

= n ~n—1_-—nx, = .
g(ang) — (TL — 1)'6,”3371 te /97 for z,, > 0| To be Contlnued
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Neyman-Pearson Lemma

e [t follows that the likelihood ratio

fX”(Xnagl) _ 9(3_37%91)
fxn(x™,00) 9(Zn, 0o)
o e—NTn
1 .
— —e 2 n

omn

e Define a test with the following one-dimensional rejection region
— . ]- nx
Tz, € Cy(c) if Q—ne2 "> e,

or equivalently,

) o 2Inc
Tn € Cp(c) if Z,, > 2In2 + n To be Continued
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Neyman-Pearson Lemma

e Then we determine the value of ¢ so that the test has size «.
This requires

00
Q@ = / g(a_?nvg())da_jn
2In242n—1llnc
00 n
n N
—-n—1_—nx —
= — T e "dX.,.
/ _ (n—1)1" "
2In242n—1lnec .

Solving this nonlinear equation, we can obtain ¢ = ¢(a,n) as
a function of a and n but it has no closed form solution. By
the Neyman-Pearson lemma and Corollary 9.2, the above test
is the uniformly most powerful size o test.

To be Continued
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Wald Test

e Consider the hypotheses of interest
Hp:g(0) =0

Versus
HA . 9(9) 7é 0

where g : RP — R? is a continuously differentiable g-dimensional vector-valued
function of a p-dimensional parameter vector 6.

e The integer ¢ is the number of restrictions on parameter vector . We assume ¢ < p.

e One important example is a linear vector-valued function
9(9) = RO — r,

where R is a ¢ X p known constant matrix, r is a ¢ X 1 known constant vector. The
null hypothesis
Hy: RO=r

imposes ¢ linear restrictions on the p-dimensional parameter vector 6.
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Wald Test

e Regularity conditions

e Assumption W.1 [Asymptotic Normality]: NCYCED a4
N(0,V), where V is a px p symmetric bounded and nonsingular
matrix, 6y is the true parameter value which is an interior point
in ©, and © is a compact parameter space.

e Assumption W.2 [Consistent Variance Estimator]: V =5
V as n — oc.

e Assumption W.3 [Smooth Condition on Restriction Func-
tion|: g : R? — R? is a continuously differentiable function of
0 € ©, and the ¢ x p matrix G(6p) = 2 g(6p) has rank g, where

qg < p.
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Wald Test

e Assumption W.1 allows the estimator 0 to be any root-n consistent asymptotically normal esti-
mator.

e Assumption W.2 assumes that there exists a consistent estimator V for the asymptotic variance
V of \/n(f — 6p). Suppose 6 admits the following asymptotic expansion

vn (é — 90) SO iw(Xz’,@o) +op(1),

=1

for some function (X5, 6y), where X™ = (X1, -+, X,,) is an IID sequence and E[(X;,0y)] = 0,
where the expectation F(-) is taken under the population distribution fx(z) = f(x,6y). Then we
have

V = E[y(Xi,00)¢(Xi,60)'].

Therefore, a consistent estimator can be given by

By ULLN for an IID random sample, primitive regularity conditions can be provided to ensure
V' — V as n — oo almost surely.
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Wald Test

e As an example, if 0 is an MLE, then from the proof of the asymptotic nor-
mality of the MLE, we have

d1n f(X'&) 90)

Vi X, 00) = —H ' (00) ——5

It follows that

V. = ERp(Xs,00)10(Xs,0)]
= H (60)I(60)H *(60)
— —H_I(Q())

where the last equality follows from the information matrix equality I(6g) +

H(6y) = 0, where both the information matrix I(#) and the Hessian matrix
H(0).

e Assumption W.3 is a regularity condition on the restriction function g(-). The
full rank condition for the ¢ x p matrix G(6y) and ¢ < p ensure that the ¢ X ¢
symmetric matrix G(6y)V G(0p)’ is nonsingular.
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Wald Test

A

e To test Hy : g(Ap) = 0, a natural approach is to base a test on statistic g(6),
where 0 is a consistent estimator of 6. Because g(+) is continuous, we always
have g(0) 5 g(6y) whenever 8 2 6y as n — oco. It follows that g(#) will be
close to zero under H and will converge to a nonzero limit under H 4. Thus,
we can test Hy by checking whether g(é) is close to zero.

~

e How large the value of g(#) should be in order to be considered as significantly

A~

different from zero will be determined by the sampling distribution of ¢(6)
under H,.

e By the mean value theorem, we have
9(0) = 9(60) + G(0) (0 - 60

where 8 = A0 + (1 — M), for some A € [0, 1], and the gradient function

is a ¢ X p matrix.
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Wald Test

e Given that || — 6| = [|A( — 6o)|| < ||0 — bo]] 2> 0 as n — oo and the
continuity of G(-), we have G ( 9) & G(0y) as n — oo. Then by the asymptotic
normality that /n(6 — ) 4N (0,V), and the Slutsky theorem, we have

[9(9) 90)] — N (0, G(60)VG(6p)).

Under Hy : g(6y) = 0, we have

Vng(0) % N (0,G(00)VG(6o)).
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Wald Test

Since the g x ¢ matrix G(6y)V G(0y)" is nonsingular given the full rank con-
dition on G(fy) and the nonsingularity condition on V', the quadratic form

Vng(8) [G(00)VG(60)] " Vng(0)

— Xq.

Because G(6) 5 G(6y) as n — oo by continuity of G(-) and 6 2 6y, and
|V Ve by Assumption W.2, we have
GOVGO) 5 G6,)VG(6,)'.

Therefore, the stochastic matrix G(0)VG(#) is nonsingular for n sufficiently
large, and by the Slutsky theorem, the Wald test statistic

W= n-g(d) [GOVEEY] g0
42

under Hp.
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Wald Test

Theorem 3 (9.3) [Wald Test]

Suppose Assumptions W.1-W.3 and H hold. Then asn — oo,

W =n-g(f) [G(é)VG(e)’} - 9(0) = Xq
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Wald Test

e W is a quadratic form in the difference /ng() and /ng(fy) = 0

A

weighted by the asymptotic variance estimator G(6)V G(0)’ of v/n[g(0)—
g9(6o)]-

e The Wald test is an asymptotically size o test that reJects Hp : g(0p) =
0 when W exceeds the (I — a)th quantile of the Xq distribution.

e Under Hy, : g(6y) # 0, we have g(6) 5 g(6) # 0, G(0) 2 G(6,), and
V 5 V. It follows that

" g(60) [0V G (00T 9(B0) > 0

under H 4. In other words, with probability approaching one, the Wald
statistic W diverges to positive infinity at the rate of n, thus ensuring

asymptotic power one of the test under H, at any given significance
level o € (0,1).
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Wald Test

o W is applicable for many root-n consistent estimators 0. We now con-
sider a special but important case: that is, when 6 is an MLE. In
this case, V = —H !(fy), and we can use the asymptotic variance

estimator V = [~H ()], where the sample Hessian matrix

. 1 <~ 0%1n f(X;,6)
H() = = .
(9) n ; 0000’

The resulting Wald test statistic can be constructed as follows:

—1

HOGO) | 9(0).

~ A

W = ng(d) [—G(é)H—

If in addition the regularity conditions of Section 8.3 hold, we can show
H(0) — H(0y) as n — oo almost surely, and therefore W — X under
Hp.

Note that the Wald test statistic W only involves estimation under
the alternative H 4.
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Lagrangian Multiplier (LM) Test
e Suppose we have an IID random sample X" from the population

f(x,0p), where 0y is an unknown parameter value in ©.

e Consider the normalized log-likelihood
i6) = 13" 1n £(x,,6)
- n 29 ’
"=

and the constrained maximum likelihood estimator that solves the
constrained maximization problem

5 ;
0 = arg max (9)

subject to the constraint that g(6) = 0.

e Define the Lagrangian function

L(0,\) =1(0) + Ng(0),

~

where A\ is the Lagrangian multiplier. Let A be the corresponding
maximizing value of \.

Hypothesis Testing Introduction to Statistics and Econometrics July 7, 2020 68/110



Parameter Estimation and Evaluation Lagrangian Multiplier (LM) Test Test

Lagrangian Multiplier (LM) Test

e Then the first order conditions (FOC) are

OL(O,)\)  0l(0) i
—50— — g TCEOA=0,
oL(0,\) o
—an g(0) =0,

_ dl(6)
, —_— — ——
GOYN = )
o di(fy)  dP(0)
- do d9ag 0~ 00)
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Lagrangian Multiplier (LM) Test

where 6, = af+ (1—a)by for some a € [0, 1], which lies on the segment
between 6 and 6y. Note

i) -
dpag ~ 1)

is the sample Hessian matrix. Given the regularity conditions in Sec-
tion 8.3, we have shown there that H () — H () as n — oo almost
surely for any consistent estimator @ of 6. Because H (fp) is nonsin-
gular, H=1(0) — H~(6y) as n — oo almost surely, and H~"(6) exists
for n sufficiently large. It follows that

(6, G0 = ~1(5,) 1 2L

o (9_90)7 (91)
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Lagrangian Multiplier (LM) Test

e Next, by the mean value theorem again, we have
0 = g(0) = g(6o) + G(6)(0 — o),

where 6, = bh + (1 —b)f, for some b € [0, 1], which lies on the segment
between 6 and 6. It follows that under Hy : g(6y) = 0, we have

G(0,)(0 — 6y) = 0. (9.2)

Hence, multiplying Eq.(9.1) by G(6,) and using Eq.(9.2), we obtain
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Lagrangian Multiplier (LM) Test

By the continuity of function G(-), ||0. —0o|| < [|0—00|| — 0, |05 — 60|
< || — 6p|| — 0 and H(0) — H(6y) as n — oo almost surely, we have

G(0,)H(0,) " G(0) — G(00)H 1 (6:)G () a.s.

and the latter is nonsingular. Therefore, for n sufficiently large, G(0,) H(0,) ' G(6)’
is nonsingular as well. Hence,

N _[G(éb)ﬁ(e‘a)—la(é)’]_lG(éb)ﬁ(éa)_lx/ﬁdiég(])

dl(6o)
do

, say.
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Lagrangian Multiplier (LM) Test

e By CLT for an IID random sequence, we have

A

IS = s gt N, 100)

where I(6p) is Fisher’s information matrix evaluated at 6 = 6.

e On the other hand,
AL [G(00)H (00) 7 G(00)] " G(00)H (bo) = Ao, say.
It follows from the Slutsky theorem that

Nyt N(0, AgI(6y)Ap)
~ N (0,~[G(60)H(60) " G (o)) .
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Lagrangian Multiplier (LM) Test

where we have used the fact that

1

AoI(00)A) = [G(B0)H(60) "G (60)'] " G(00)H (00) " I(00)H (00) " G(60)' [G(00)H (6) "G (60)']
—  —[G(60)H(60) ' G(60)] "

given the information matrix equality I(6y) + H(6y) = 0. It follows
that the quadratic form

—nNG(60)H(00) "1G(Bo)' A 3 X2

under H.
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Lagrangian Multiplier (LM) Test

Theorem 4 (9.4) [LM Test]

Suppose Assumptions M.1-M.6, Assumption W.3, and Hj hold.
Define

A o~

- - —1
LM = nNG(8) [—H(e)} G(6)' X
Then under Hy,

d
LM—>Xgasn—>oo.
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Lagrangian Multiplier (LM) Test

e An asymptotically size o« LM test will reject the null
hypothesis Hy : g(6g) = 0 when LM exceeds the (1—a)th
quantile of the x3 distribution.

i’: Question: What is the interpretation for the Lagrangian multiplier \?
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Lagrangian Multiplier (LM) Test

e When the parametric restriction g(6y) = 0 is valid, the
restricted estimator 6 should be near the point that max-
imizes the log-likelihood. Therefore, the slope of the
log-likelihood function shoud be close to zero at the re-
stricted estimator 6.

e As can be seen from the FOC that G(8)'\ = —%,
the LM test is based on the slope of the log-likelihood
at the point where the function is mazimized subject to
the constraint.

~

e Alternatively, the Lagrange multiplier A measures the
magnitude of the departure of g(#) from g(6y) = 0 :
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Lagrangian Multiplier (LM) Test

~

— If the constraint g(6y) = 0 holds, then g(8) will be

o~

close to 0, and so is A.

~

— If the constraint g(6y) # 0, then g(0) will be signifi-
cantly different from 0. As a result, A will be large,
giving the LM test power to reject Hy. How large
\/55\ is considered as “large” is determined by its

sampling distribution.

— The LM test is convenient to use in practice, be-
cause only the null model, which is usually simpler,
has to be estimated.
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Likelihood Ratio Test

e Since X" is an IID random sample from the population
fx(x) = f(z,0p), where 6y is unknown, we have the
likelihood function of X"

n

fxn(X™,0) = | | £(X3,0).

1=1

Hypothesis Testing Introduction to Statistics and Econometrics July 7, 2020 80/110



Parameter Estimation and Evaluation Likelihood Ratio Test

Likelihood Ratio Test

e We define the likelihood ratio statistic
f\ _ maxgee an (ang)
maxgee, fxn» (X", 0)
H?:l f(Xu 9)

where 6 and 6 are the unconstrained and constrained MLEs respectively, namely,

0 = a,rglgleaécl(é’),
0 = argmaxi(f),

CISS N
with
. 1 <
[(0) = — | X;, 0
0 =5 L /(X0

is the sample average of log-likelihood functions, and ©g is the parameter space ©
subject to the constraint g(f) =0, i.e., ©g = {# € © : g(0) = 0}.
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Likelihood Ratio Test

e Suppose the null hypothesis Hy : g(69) = 0 holds. Then
both unconstrained and constrained MLEs # and 6 are
consistent for 6y, and imposing the restriction should not
lead to a large reduction in the log-likelihood function.
Therefore, we expect that the likelihood ratio A will be
close to unity.

e On the other hand, it H, is false, then the unconstrained
MLE 6 is consistent for 0y but the constrained MLE 0
is not. As a consequence, we expect that the likelihood
ratio A is larger than unity.
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Likelihood Ratio Test

e Hence, we can test Hy by comparing whether Ais signif-
icantly larger than unity or whether In A is greater than
0. How large A or In A must be in order to be considered
as significantly large will be determined by the sampling
distribution of A.

e Formally, we define the likelihood ratio test statistic as
follows:

~

LR=2InA = 2n [1(9‘) _ Z(é)] .
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Likelihood Ratio Test

e By asecond order Taylor’s series expansion of [ () around
the unconstrained MLE 6, we have

on {i(é) - li(é) + %(9 )+ 50~ é)lddé%;) (6~ é)] }
= V(0 —6)[-A(0.)]Vn(6 - D),

where 0, = af + (1 — a)0 for some a € [0,1], lies on the
segment between 6 and 6, and d%l(@) = 0 which is the
FOC of the unconstrained MLE 6, and again

LR

. d21(0)
H0) = Toa

is the sample Hessian matrix.
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Likelihood Ratio Test

e Next, applying the mean value theorem for %i(é) around the constrained
MLE 6, we obtain

di(0)
df
dl(@)
= + H(6,)(0 -6
(0,0 ),
where 0, = b0+ (1—b)0 for some b € [0, 1], lies on the segment between f and
§. This and the FOC of the constrained MLE that G(6)'\ = ——l(Q) imply

Vil -0) = —AE) Vit
= H(6)"'G(0) VA

This relationship provides an alternative interpretation for the multiplier 5\,

namely, it measures the difference between the unconstrained and constrained
MLEs 6 and 6.
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Likelihood Ratio Test

o [t follows that

A

LR = —/nAG(0)H (0,) " H(0.)H (6,) " G () v/nA.

Because

LR—LM = —\n\ [G(Q) (By) " H(8,) H(G) " C(0) — GO H(H) G0 | v
= Op(1)op(1)0Op(1)
— OP(l)a

where /nA = Op(1) by Lemma 7.11 given /n\ A
N(0,—[G(60)H (09) 1G(6p)'] 1) as shown in Section 9.4,
and

G(0)H(0y) "H(0,)H(0) 'G(0) — G(O)H(0) ' G(0)
5 G(00)H(8p) T H(00)H (6y) " 1G(60) — G(6y)H(00) *G(6y) =0
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Likelihood Ratio Test

e It follows that LR and LM are asymptotically equivalent under Hy.

As a result, by the asymptotic equivalence lemma and LM A x§ as
n — oo under H, we have the following result:

Theorem 5 (9.5) [LR Test]

Suppose Assumptions M.1-M.6, Assumption W.3, and Hy hold.
Then under Hp,

d

LR%X?] as 1 — 00.
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Likelihood Ratio Test

o In fact,2 it can also be shown that the Wald test statistic W based on
MLE 6 and the LM test statistic LM are asymptotically equivalent
under H.

e This implies that all three tests are asymptotically equivalent under
Hp. The three classical tests can be graphically represented in Figure
9.x below: (Note: For the Figure, see Figure 4.8 of William Greece).

e The LR test statistic LR involves both constrained and unconstrained
MLE estimators. However, it is very convenient to compute, because
the sample log-likelihood value is the objective function and is usually

reported by statistical software when a probability distribution model
f(z,0) is estimated by the MLE.
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Likelihood Ratio Test

Theorem 6 (9.6) [LR Test Based on Sufficient Statistic]

If T'(X™) is a sufficient statistic for #, and LR(X"™) and LR|T(X")]
are the likelihood ratio tests based on X" and T'(X") respec-

tively, then
LR(X") = LR[T(X")].
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Likelihood Ratio Test

Proof:
e By the Factorization theorem, the PMF /PDF of X™ can be written as

fxn(x",0) = g[T(x"),0)h(x"), for all § € O,
where ¢(¢,6) is the PMF /PDF of T'(X") and h(x") does not depend on 6.

e [t follows that

LR(X"™) = 2nlnA

= 2nln an(Xn’év)]
fxn (X7, 0)

o {g[T(X”),@h(X”>}
g[T(X"), f]h(X")

o {g[T(X”),@}
g[T(X"),0]

= LR[T(X")

e This implies that the LR test statistic depends on X" only through the statistic 7'(X")
when T'(X"™) is a sufficient statistic for 6.
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Hypothesis Testing under the Bernoulli Distribution

e Suppose X" is an IID random sample from a Bernoulli(#) dis-
tribution, where a Bernoulli random variable takes two possible
values:

Y. 1, with probability 6,
* | 0, with probability 1 — 6.
The parameter 6 € (0, 1) is unknown.

e Suppose we are interested in testing
HO 0 = 90

versus

Hl . 0 7& 90.
Hence, we have g(6) = 0 — 0y, and the gradient

G(Q):d?i—gg):l.
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Hypothesis Testing under the Bernoulli Distribution

e Since the population PMF f(z,0) = 0*(1 — 6)'~* for
x = 0,1, the log-likelihood function of the IID random
sample X" is given by

In L (| X™)

i=1
= nX,Inf+n(1-X,)In(1l-6),

where the sample mean X,, is a sufficient statistic for 6.
The FOC of the MLE is

OlnL (0|X™) nX, n-—nX,
p— — _—_ = p— 0.
00 0 1—0

Thus we have the MLE 0 = X,,.
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Hypothesis Testing under the Bernoulli Distribution

The Wald Test

e Recall the Hessian matrix

H(O) = B, [82 lnf(Xi,G)] |

062
Because

062 T2 (1-6)2

the sample Hessian matrix

P _lzasz Xof) Y X e (-X) Xy 1-X,
no? n(l— 0)2 2 (1-0)?

Hence, we have

H() = -

X, (1-X,)
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Parameter Estimation and Evaluation lllustrative Examples

Hypothesis Testing under the Bernoulli Distribution

e The Wald test statistic

~

W= ngld) [~cOEB)GE)] 90

under Hy. Hence, /n(X,, — ) 4 N(0,c0?).
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Parameter Estimation and Evaluation lllustrative Examples

Hypothesis Testing under the Bernoulli Distribution

The LM Test

e Define the Lagrangian function

L(0,)) =1(0) + XNg(0) =1(0) + X(0 — 6)

where the normalized log-likelihood

[(0) = X, In0+ (1—X,)In(1—9).

e The first order conditions for the constrained MLE are

oL(0,\) ol
o0~ o 70

oL(0,\) .~ - B

—y = 9(0)=0—0 =0,
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Parameter Estimation and Evaluation lllustrative Examples

Hypothesis Testing under the Bernoulli Distribution

e Tt follows that 0 = 0y, and

- al(0)
A=
00
X, 1—-X,
— ——~—|— ~
0 1—46
n_é Xn_g()

This indicates that )\ measures the difference between the uncon-
strained MLE 6 and the constrained MLE 0 = 0.

e Also, the sample Hessian matrix

) - X, 1-X,  X,(1-6p)*+(1-X,)05
a 02 (1—60)* 05(1 — 6p)?
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Parameter Estimation and Evaluation lllustrative Examples

Hypothesis Testing under the Bernoulli Distribution

e Therefore, we have

LM = —n)NGO)HO)1GH) X
[ Xt X0 (1—00)2 + (1— X,)02] "
N 0o(1 — ) 02(1 — )2
n()_(n — 90)2

Xon(1—00)2+ (1 - X,)02
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Parameter Estimation and Evaluation lllustrative Examples

Hypothesis Testing under the Bernoulli Distribution

The LR Test

e Finally, we calculate the LR test statistic

LR = 2n 'Z(é) (é)}

— | Xl (g—) (- X,) m(ll‘_)(j;)].

C_"-.l>
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Parameter Estimation and Evaluation lllustrative Examples

Hypothesis Testing under the Normal Distribution

e Suppose X" is an IID random sample from a N(u,0?) population,
where 6 = (u,0?) is unknown.

e We are interested in testing the hypotheses

Ho : pp = po

versus

Ha : p # o,
where g is a known number. This is equivalent to choosing the test
function

9(8) = 1 — po-
It follows that dg(0)

g
G(0) = ——= (1,0

is a two-dimensional row vector.

Hypothesis Testing Introduction to Statistics and Econometrics July 7, 2020 100/110



Parameter Estimation and Evaluation lllustrative Examples

Hypothesis Testing under the Normal Distribution

e Since the PDF of a N(u,o?) population is

1 . (z—p)?

e 202
V2mo?

The normalized log-likelihood function of the random sample X" is

f(x,0) =

" 1 1 1 1
I(0]X") = =5 In(27) — 5 In(o?) — . D (X — ).
1=1

For the unconstrained MLE, we have obtained 6 = (f1,6%), where

[)J — Xna
1 .
~2 2
- X?,_Xn
n;( )
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Parameter Estimation and Evaluation lllustrative Examples

Hypothesis Testing under the Normal Distribution

Also, the sample Hessian matrix

) _ 1 — LIS (X — )
H(9) = no o7 it (Xi — #
(©) — i i (Xi = 1) #_a_{;% =1 (Xi = p)®

When 6 = é, we have
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Parameter Estimation and Evaluation lllustrative Examples

Hypothesis Testing under the Normal Distribution

The Wald Test Statistic

W= —ng@) [C@IO)GOY| 90)
_ (X — o)’
0”-2
e X1
under Hj.
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Parameter Estimation and Evaluation lllustrative Examples

Hypothesis Testing under the Normal Distribution

The LM Test Statistic

e (Consider the constrained MLE

subject to the constrain that pu = puy.

e Define the Lagrangian function

L(6, ) = [(6]X"™) + A(1 — po)-
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Parameter Estimation and Evaluation lllustrative Examples

Hypothesis Testing under the Normal Distribution

e The FOCs are:
(‘9L(6~’, 5\)
o
OL(H, \)
Jo?
OL(6,\)
o\

Solving for these FOCs, we obtain

ji

5_2

A

H(0) = [ _

= Mo,
1 n
= = X — up)?
n < ( I'LO):'
1=1
1 -
= —=(Xn — o),

— 3 — 51 (X0 — Ho)

%(Xn _H'O) _%
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Parameter Estimation and Evaluation lllustrative Examples

Hypothesis Testing under the Normal Distribution

e It follows that the LM test statistic

LM = —nNGO)H Y 0)G(0)
n(Xn — UO)Q
62 - Q(Xn - /JJO)2 .
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Parameter Estimation and Evaluation lllustrative Examples

Hypothesis Testing under the Normal Distribution

The Likelihood Ratio Test Statistic

e Since
A 1 1 1
1(0) = —iln(27r) -3 In(62%) — 5
"~ 1 1 1

e [t follows that

LR = 2n [i(é|xn) . i(é\xn)}

5.2
= nln (&2> .

e [t is interesting to observe that the LR principle tests the hypothesis on the
population mean by comparing the variance estimators under the null and
alternative hypotheses. Here, the likelihood ratio is a log-function of the
sample variance ratio. Intuitively, when p # pg, 62 =n=1'> " (X — po)? is
not a consistent estimator for o2. It will be larger than 6% when n is large,
giving the LR its power.
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9.1 Introduction to Hypothesis Testing
9.2 Neyman-Pearson Lemma

9.3 Wald Test

9.4 Lagrangian Multiplier (LM) Test
9.5 Likelihood Ratio Test

9.6 lllustrative Examples

9.7 Conclusion J
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Parameter Estimation and Evaluation Conclusion

Conclusion

e Hypothesis testing is one of the most important tasks in statis-
tical inference.

e In this chapter we have introduced basic ideas of hypothesis
testing in statistical inference.

e We introduce the well-known Neyman-Pearman lemma that a
likelihood ratio based test will be uniformly most powerful test
for simple hypotheses.

e We discuss three important testing methods, namely the Wald
test, the Lagrange Multiplier (LM) test, and the Likelihood
Ratio (LR) test, and show they are asymptotically equivalent
to each other under the null hypothesis.
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Parameter Estimation and Evaluation Conclusion

Conclusion

e It is important to note that all hypothesis tests considered in this
chapter assume that the population distribution model is correctly
specified.

e When the population distribution model is misspecified, the Wald
test statistic and the LM test statistics have to be modified to use a
consistent asymptotic variance estimator which is robust to model
misspecification. However, it is impossible to modify the Likelihood
ratio test statistic.

e Finally, when testing economic hypotheses, we usually need to trans-
form an economic hypothesis into a statistical hypothesis on model
parameters. Since some auxiliary conditions are often imposed in
such a transformation, there usually exists a gap between the orig-
inal economic hypothesis and the resulting statistical hypothesis.
Caution is needed to interpret the testing results of the statistical

hypotheses.
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