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Probability and Statistics for Economists
Chapter 8 Parameter Estimation and Evaluation

1. One observation is taken on a discrete random variable X with PMF
f(x, θ) given below, where θ ∈ Θ = {1, 2, 3}. Find the MLE of θ.

x f(x, 1) f(x, 2) f(x, 3)
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1
2
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4

Solution:

θ̂MLE = arg maxL(θ|x) = arg max f(x|θ)

At x = 0, maxL(θ|0) = max f(0|θ) = 1
3

when θ = 1. So θ̂MLE = 1;

At x = 1, maxL(θ|1) = max f(1|θ) = 1
3

when θ = 1. So θ̂MLE = 1;

At x = 2, maxL(θ|2) = max f(2|θ) = 1
4

when θ = 2 and 3. So θ̂MLE = 2
and 3;

At x = 3, maxL(θ|3) = max f(3|θ) = 1
2

when θ = 3. So θ̂MLE = 3;

At x = 4, maxL(θ|4) = max f(4|θ) = 1
4

when θ = 3. So θ̂MLE = 3.

2. Let Xn be an IID random sample with one of two PDF’s. If θ = 0, then

f(x, θ) =

{
1, 0 < x < 1,
0, otherwise

while if θ = 1, then

f(x, θ) =

{
1/(2
√
x), 0 < x < 1,

0, otherwise.
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Find the MLE of θ.
Solution:

L(0|x) = 1 if 0 < xi < 1 for i = 1, 2, . . . , n. L(1|x) =
∏n

i=1(2
√
xi)
−1 if

0 < xi < 1 for i = 1, 2, . . . , n. And we want to maximize L(θ|x). Hence

θ̂MLE = 1 if
∏n

i=1(2
√
xi)
−1 > 1, θ̂MLE = 0 if

∏n
i=1(2

√
xi)
−1 < 1, θ̂MLE = 0

and 1 if
∏n

i=1(2
√
xi)
−1 = 1.

3. Suppose the random variables {Y1, · · ·, Yn} satisfy

Yi = βxi + εi, i = 1, · · ·, n

where x1, · · ·, xn are fixed constants, and {εi} is an IID sequence from a
N(0, σ2) distribution, with σ2 unknown.

(1) Find a two-dimensional sufficient statistic for (β, σ2);
(2) Find the MLE of β, and show that it is an unbiased estimator of β;
(3) Find the distribution of the MLE of β.

Solution:
(1)

L(θ|y) =
∏
i

1√
2πσ2

exp[− 1

2σ2
(yi − βxi)2]

= (2πσ2)−n/2 exp[−β
2
∑

i x
2
i

2σ2
] exp[− 1

2σ2

∑
i

y2
i +

β

σ2

∑
i

xiyi]

By factorization theorem, (
∑

i y
2
i ,
∑

i xiyi) is a sufficient statistic for (β, σ2).
(2)

logL(β, σ2|y) = −n
2

log(2π)− n
2

log σ2− 1

2σ2

∑
i

y2
i +

β

σ2

∑
i

xiyi−
β2

2σ2

∑
i

x2
i

For a fixed value of σ2,

∂ logL

∂β
=

1

σ2

∑
i

xiyi −
β

σ2

∑
i

x2
i = 0

⇒ β̂ =

∑
i xiyi∑
i x

2
i

Also,
∂2 logL

∂β2
= − 1

σ2

∑
i

x2
i < 0
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So it is a maximum. Because β̂ does not depend on σ2, it is the MLE.
And β̂ is unbiased because

Eβ̂ =

∑
i xiEyi∑
i x

2
i

=

∑
i xi · βxi∑

i x
2
i

= β

(3) Because
∑

i x
2
i is constant and yi is normal distribution, β̂ is normally

distributed with mean β, and

V ar(β̂) = V ar(

∑
i xiyi∑
i x

2
i

) =
∑
i

(
xi∑
i x

2
i

)2V ar(yi) =

∑
i x

2
i

(
∑

i x
2
i )

2
σ2 =

σ2∑
i x

2
i

Thus we have β̂ ∼ N(β, σ2∑
i x

2
i
).

4. One observation, X, is taken from a N(0, σ2) population.
(1) Find an unbiased estimation of σ2;
(2) Find the MLE of σ;
(3) Discuss how the method of moments estimator of σ might be found.

Solution:
(1) E[X2] = V ar(X) +µ2 = σ2. Therefore X2 is an unbiased estimator of

σ2.
(2)

L(σ|x) =
1√

2πσ2
exp[− 1

2σ2
x2]

logL(σ|x) = −1

2
log(2π)− log σ − x2

2σ2

∂ logL

∂σ
= − 1

σ
+
x2

σ3
= 0⇒ σ̂ =

√
x2 = |x|

∂2 logL

∂2σ
= −3x2

σ4
+

1

σ2
< 0 at σ̂ = |x|

Thus, σ̂ = |x| is a local maximum. Because it is the only place where the
first derivative is zero, it is also a global maximum.

(3) Since the first moment E[X] = 0 is given, we only need to match the
second second moment: E[X2] = σ2 = X2 ⇒ σ̂ = |X|.

5. Suppose f(x, θ) is a PDF model and f(x, θ) is continuously differentiable
with respect to θ ∈ Θ, where θ is an interior point in parameter space Θ.
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Then for all θ in the interior of Θ,∫ ∞
−∞

∂ ln f(x, θ)

∂θ
f(x, θ)dx = 0

Solution:
See Lemma 8.3 on page 426 of textbook.

6. [Information Matrix Equality]: Suppose a PDF model f(x, θ) is twice
continuously differentiable with respect to θ ∈ Θ, where θ is an interior point
in parameter space Θ. Define

I(θ) =

∫ ∞
−∞

[
∂ ln f(x, θ)

∂θ

]2

f(x, θ)dx

H(θ) =

∫ ∞
−∞

[
∂2 ln f(x, θ)

∂θ2

]
f(x, θ)dx

Then show that for all θ in the interior of Θ,

I(θ) +H(θ) = 0.

Solution:
See Lemma 8.4 on page 427 of textbook.

7. Let W1, . . . ,Wk be unbiased estimators of a parameter θ with var (Wi) =
σ2
i and Cov (Wi,Wj) = 0 if i 6= j

(1) Show that, of all estimators of the form
∑k

i=1 aiWi, where the ai s

are constants and Eθ

(∑k
i=1 aiWi

)
= θ, the estimator W ∗ =

∑k
i=1Wi/σ

2
i∑k

i=1 1/σ2
i

has

minimum variance.
(2) Show that Var (W ∗) = 1∑k

i=1 1/σ2
i

.

Solution:
(1)

min
ai

V ar(
k∑
i=1

aiWi) s.t. E(
k∑
i=1

aiWi) = θ

Note that V ar(
∑k

i=1 aiWi) =
∑k

i=1 a
2
iV ar(Wi) for Wi are uncorrelated. Al-

so note that E(
∑k

i=1 aiWi) = θ ⇔
∑k

i=1 ai = 1. Therefore, the question
becomes

min
ai

k∑
i=1

a2
iV ar(Wi) s.t.

k∑
i=1

ai = 1
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L =
∑k

i=1 a
2
iV ar(Wi) + λ(1−

∑k
i=1 ai)

FOC: ∂L
∂ai

= 0⇒ 2σ2
i a
∗
i = λ∗. ∂L

∂λ
= 0⇒

∑k
i=1 ai = 1.

So a∗i = λ∗

2σ2
i

and plug it into
∑k

i=1 ai = 1 ⇒ λ∗ = 2∑k
i=1

1

σ2
i

and thus

a∗i =

2∑k
i=1

1
σ2
i

2σ2
i

=
1

σ2
i∑k

i=1
1

σ2
i

.

Note that SOC is satisfied. Hence W ∗ = a∗iWi =

∑k
i=1

1

σ2
i

Wi∑k
i=1

1

σ2
i

has the

minimum variance.

(2) V ar(W ∗) =
∑k

i=1 a
∗2
i V ar(Wi) =

∑k
i=1

(
1

σ2
i

)2

σ2
i(∑k

i=1
1

σ2
i

)2 = 1∑k
i=1

1

σ2
i

.

8. Suppose {X1, X2, . . . , Xn} is an i.i.d. random sample from some popula-
tion with unknown mean µ and variance σ2. Define parameter θ = (µ− 2)2.

(1) Suppose θ̂ =
(
X̄n − 2

)2
is an estimator for θ, where X̄n is the sample

mean. Show that θ̂ is not unbiased for θ. [Hint: X̄n − 2 = X̄n − µ+ µ− 2.]
(2) Find an unbiased estimator for θ.

Solution:
(1) To show E(θ̂) 6= θ:

E(θ̂) = E(X̄n − 2)2 = E(X̄n − µ+ µ− 2)2

= E(X̄n − µ)2 + 2(µ− 2)E(X̄n − µ) + (µ− 2)2

= V ar(X̄n) + 2(µ− 2)(EX̄n − µ) + (µ− 2)2

= V ar(X̄n) + (µ− 2)2 > (µ− 2)2 = θ

So θ̂ is not unbiased for θ.
(2) From (1) E(θ̂) = V ar(X̄n)+θ = σ2

n
+θ, and we know S2

n = 1
n−1

∑n
i=1(Xi−

X̄n)2 is an unbiased estimator for σ2. So We can define θ̂′ = θ̂ − S2
n

n
, then

E(θ̂′) = E(θ̂)− E(S
2
n

n
) = E(θ̂)− σ2

n
= θ. θ̂′ is unbiased.

9. A random sample, X1, . . . , Xn, is taken from an i.i.d. population with
(µ, σ2). Consider the following estimator of µ :

µ̂ =
2

n(n+ 1)

n∑
i=1

i ·Xi =
2

n(n+ 1)
(X1 + 2X2 + 3X3 + · · ·+ nXn)
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(1) Show µ̂ is unbiased for µ.
(2) Which estimator, µ̂ or X̄n, is more efficient? Explain. [Hint:

∑n
i=1 i =

n(n+1)
2

and
∑n

i=1 i
2 = n(n+1)(2n+1)

6
.
]

Solution:
(1) E(µ̂) = 2

n(n+1)

∑n
i=1 iE(Xi) = µ 2

n(n+1)

∑n
i=1 i = µ 2

n(n+1)
n(n+1)

2
= µ, so

µ̂ is unbiased for µ.
(2) Both µ̂ and X̄ are unbiased to µ,

MSE(µ̂) = V ar(µ̂) = V ar(
2

n(n+ 1)

n∑
i=1

iXi)

=
4

n2(n+ 1)2

n∑
i=1

i2σ2 (Xi is i.i.d.)

= σ2 4

n2(n+ 1)2

n(n+ 1)(2n+ 1)

6

=
2(2n+ 1)

3n(n+ 1)
σ2

MSE(X̄) = V ar(X) =
σ2

n

MSE(µ̂)−MSE(X̄) =
2(2n+ 1)

3n(n+ 1)
σ2 − σ2

n

=
n− 1

3n(n+ 1)
σ2 > 0 for n > 1

So X̄ is more efficient for n > 1.

10. Suppose (X1, X2, . . . , Xn) is an i.i.d. N (µ, σ2) random sample. Define

S2
n = (n− 1)−1

n∑
i=1

(
Xi − X̄n

)2

where X̄n = n−1
∑n

i=1Xi; and

σ̂2
n = n−1

n∑
i=1

(
Xi − X̄n

)2
.

(1) Are S2
n and σ̂2

n unbiased estimators for σ2?
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(2) Show which estimator is more efficient. Give your reasoning.
Solution:

(1) For Xi ∼i.i.d N(µ, σ2), S2
n is unbiased. And σ̂2

n = (n−1)S2
n

n
, then

E(σ̂2
n) = n−1

n
E(S2

n) = n−1
n
σ2 6= σ2.

So σ̂2
n is not unbiased estimator for σ2.

(2) (n−1)S2
n

σ2 ∼ χ2
n−1 ⇒ V ar( (n−1)S2

n

σ2 ) = 2(n− 1)⇒ V ar(S2
n) = 2σ4

n−1

MSE(S2
n) = V ar(S2

n) =
2σ4

n− 1

Bias(σ̂2
n)2 = (E(σ̂2

n)−σ2)2 = 1
n2σ

4. nσ̂2
n

σ2 = (n−1)S2
n

σ2 ∼ χ2
n−1 ⇒ V ar(nσ̂

2
n

σ2 ) =

2(n− 1)⇒ V ar(σ̂2
n) = 2(n−1)σ4

n2

So

MSE(σ̂2
n) = V ar(σ̂2

n) +Bias(σ̂2
n)2

=
2(n− 1)σ4

n2
+

1

n2
σ4

=
2n− 1

n2
σ4

MSE(S2
n)−MSE(σ̂2

n) = (
2

n− 1
− 2n− 1

n2
)σ4

=
3n− 1

n(n− 1)
σ4 > 0 for n > 1

Therefore, σ̂2
n is more efficient.

11. Let X1, · · ·, Xn be an IID random sample from the following distribution:

P (X = −1) =
1− θ

2
, P (X = 0) =

1

2
, P (X = 1) =

θ

2
.

(1) Find the MLE of θ and check whether it is unbiased estimator;
(2) Find the method of moments estimator of θ;
(3) Calculate the Cramer-Rao lower bound for the variance of an unbiased

estimator of θ.
Solution:

(1) Xi follows categorical distribution with three outcomes. This is a
generalization of Bernoulli distribution. Given the iid sample, we can write
the joint PMF as
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fXn(xn|θ) =
n∏
i=1

(
1− θ

2
)1(xi=−1)(

1

2
)1(xi=0)(

θ

2
)1(xi=1),

where 1(·) is an indicator function. Then we can further write the log-
likelihood function as

lnL(θ|xn) = ln(
1− θ

2
)

n∑
i=1

1(xi = −1)

+ln(
1

2
)

n∑
i=1

1(xi = 0) + ln(
θ

2
)

n∑
i=1

1(xi = 1).

Check the FOC:

∂lnL(θ|xn)

∂θ
=
−1

1− θ

n∑
i=1

1(xi = −1) +
1

θ

n∑
i=1

1(xi = 1) = 0

Check the SOC:

∂2lnL(θ|xn)

∂2θ
=

−1

(1− θ)2

n∑
i=1

1(xi = −1)− 1

θ2

n∑
i=1

1(xi = 1) < 0.

By FOC, we have θ̂MLE =
∑n
i=1 1(Xi=1)∑n

i=1 1(Xi=1)+
∑n
i=1 1(Xi=−1)

=
∑n
i=1 1(Xi=1)

n−
∑n
i=1 1(Xi=0)

.

Denote a =
∑n

i=1 1(Xi = −1), b =
∑n

i=1 1(Xi = 0), and c =
∑n

i=1 1(Xi =

1), then we have θ̂MLE = c
a+c

= n−a−b
n−b . We can show that (a, b, c) follows

trinomial distribution with the following density

f(a, b, c) =
n!

a!b!c!
(
1− θ

2
)a(

1

2
)b(
θ

2
)c.

Since we want to calculate the expectation of θ̂MLE, we need to calculate
E(n−a−b

n−b ).

E(
n− a− b
n− b

) =
n∑
b=0

n−b∑
a=0

n− a− b
n− b

n!

a!b!(n− a− b)!
(
1− θ

2
)a(

1

2
)b(
θ

2
)n−a−b

=
n∑
b=0

n−b∑
a=0

n− a− b
n− b

Cb
nC

a
n−b(

1− θ
2

)a(
1

2
)b(
θ

2
)n−a−b

=
n∑
b=0

Cb
n(

1

2
)b

n−b∑
a=0

n− a− b
n− b

Ca
n−b(

1− θ
2

)a(
θ

2
)n−a−b
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For the summation of a, when a = n−b, the term n−a−b
n−b C

a
n−b(

1−θ
2

)a( θ
2
)n−a−b =

0. So we can change the upper bound of the summation from n−b to n−b−1,
we have

E(
n− a− b
n− b

) =
n∑
b=0

Cb
n(

1

2
)b
n−b−1∑
a=0

n− a− b
n− b

Ca
n−b(

1− θ
2

)a(
θ

2
)n−a−b

=
n∑
b=0

Cb
n(

1

2
)b
n−b−1∑
a=0

n− a− b
n− b

(n− b)!
(n− b− a)!a!

(
1− θ

2
)a(

θ

2
)n−a−b

=
n∑
b=0

Cb
n(

1

2
)b
n−b−1∑
a=0

(n− b− 1)!

(n− b− 1− a)!a!
(
1− θ

2
)a(

θ

2
)n−a−b

=
n∑
b=0

Cb
n(

1

2
)b
n−b−1∑
a=0

(n− b− 1)!

(n− b− 1− a)!a!
(
1− θ

2
)a(

θ

2
)n−a−b−1 × θ

2

=
θ

2

n∑
b=0

Cb
n(

1

2
)b
n−b−1∑
a=0

Ca
n−b−1(

1− θ
2

)a(
θ

2
)n−b−1−a

=
θ

2

n∑
b=0

Cb
n(

1

2
)b × (

1− θ
2

+
θ

2
)n−b−1

=
θ

2

n∑
b=0

Cb
n(

1

2
)b × (

1

2
)n−b−1

=
θ

2

n∑
b=0

Cb
n(

1

2
)b × (

1

2
)n−b × 2

= θ ×
n∑
b=0

Cb
n(

1

2
)b × (

1

2
)n−b

= θ × (
1

2
+

1

2
)n

= θ,

where we have make use of the following equality

(p+ q)n =
n∑
i=0

Ci
np

iqn−i.

Thus, the MLE is unbiased.
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Many of you show the unbiasedness by arguing

Eθ̂MLE = E

( ∑n
i=1 1(Xi = 1)

n−
∑n

i=1 1(Xi = 0)

)
= E(

A

B
) =

EA

EB
=

E
∑n

i=1 1(Xi = 1)

n− E
∑n

i=1 1(Xi = 0)
= θ,

where we let A =
∑n

i=1 1(xi = 1) and B = n −
∑n

i=1 1(xi = 0). This
argument is WRONG! Since in general, E(A

B
) 6= EA

EB
= θ. Therefore,

you need to calculate the expectation using definition.
(2) For the Method of Moment Estimator, we just need to match the first

moment because E(X) = −1× 1−θ
2

+ 1× θ
2

= θ − 1
2
. So we have

1

n

n∑
i=1

Xi = θ̂MME −
1

2
.

Thus we have θ̂MME = 1
n

∑n
i=1 Xi + 1

2
. It is unbiased since E(θ̂MME) =

E(Xi) + 1/2 = θ − 1/2 + 1/2 = θ.

(3) Since only the θ̂MME is unbiased, so we just need to calculate the
Cramer-Rao lower bound for unbiased estimator. By definition, the Cramer-
Rao lower bound Bn(θ)

Bn(θ) =

[
dEθ( ̂θMME)

dθ

]2

Eθ

[
∂lnfXn (xn,θ)

∂θ

]2 .

The numerator is 1 given the MME estimator is unbiased. For the denomi-
nator, given i.i.d. and information matrix equality, we have

Bn(θ) =
1

−nEθ
[
∂2lnfXi (xi,θ)

∂2θ

] .
The log of marginal PMF is given by

lnfXi(xi, θ) = 1(xi = −1)ln(
1− θ

2
) + 1(xi = 0)ln(

1

2
) + 1(xi = 1)ln(

θ

2
).

Then we have

∂2lnfXi(xi, θ)

∂2θ
=

−1

(1− θ)2
1(xi = −1)− 1

θ2
1(xi = 1).
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By definition of indicator function, E(1(xi = 1)) = P (Xi = 1) = θ
2

and
E(1(xi = −1)) = P (Xi = −1) = 1−θ

2
. Then we have

E

[
∂2lnfXi(xi, θ)

∂2θ

]
=

−1

2(1− θ)
− 1

2θ
=

−1

2θ(1− θ)
.

Finally, we have the Cramer-Rao lower bound given by

Bn(θ) =
2θ(1− θ)

n
.

We can see that the MME estimator doesn’t achieve this lower bound since
V ar(θ̂MME) = 1

2n
≥ Bn(θ) = 2θ(1−θ)

n
.

12. Suppose Xn = (X1, · · ·, Xn) is an IID random sample from a Poisson(α)
distribution with probability mass function

fX(x) = e−α
αx

x!
for x = 0, 1, 2, · · ·,

where α is unknown.
(1) Find the MLE for α;
(2) Is the MLE for α the best unbiased estimator for α? Give your rea-

soning.
Solution:

(1) Given the i.i.d. data Xn, we can write the log-likelihood function as

lnL(α|xn) = −nα−
n∑
i=1

ln(xi!) + lnα
n∑
i=1

xi.

By FOC, we have

∂lnL(α|xn)

∂α
= −n+

1

α

n∑
i=1

xi = 0

we can have α̂MLE = 1
n

∑n
i=1 xi. Checking the SOC we have ∂2lnL(α|xn)

∂2α
=

−1
α2

∑n
i=1 xi < 0. Thus we have α̂MLE is a global maximizer.

(2) To check if the MLE is the best unbiased estimator for α, we need
to calculate the Cramer-Rao lower bound and compare it to the variance

11



of the MLE estimator. By similar argument, we just need to calculate the
expectation of the second order derivative of the log density function.

∂2lnfX(x)

∂2α
=
−1

α2
x.

Then we have the denominator is given by

−nE
[
∂2lnfX(x)

∂2α

]
= −n−1

α2
EX =

n

α
.

And we have the Cramer-Rao lower bound Bn(α) = α
n
. Next, we need to

calculate V ar(α̂MLE):

V ar(α̂MLE) = V ar(
1

n

n∑
i=1

Xi)

=
1

n
V ar(X)

=
α

n
.

Since V ar(α̂MLE) = Bn(α), then the MLE achieves the Cramer-Rao lower
bound and is the best unbiased estimator for α.

13. Suppose Assumptions M.1-M.6 hold except that the density model f(x, θ)
may not be correctly specified for the unknown population density fX(x), i.e.,
there exists no θ ∈ Θ such that fX(x) = f(x, θ) for all x. The MLE θ̂ =
arg maxθ∈Θ ln L̂ (θ | Xn) is called the Qausi-MLE. (1) Show θ̂ → θ0 almost

surely as n→∞; (2) derive the asymptotic distribution of
√
n
(
θ̂ − θ0

)
and

compare it with the result of Theorem 8.5.
Solution:

(1) The result still holds because nothing is changed in the proof of
Theorem 8.4. Note that here θ0 is still the unique maximizer of Q(θ) =

E[lnf(Xi, θ)] and Q̂n(θ)
a.s.→ Q(θ) no matter what the true distribution is.

(2) First, Lemma 8.2 does not hold if the model is misspecified. That
is, mean of score function E[Si(θ)] 6= 0.[Correction: Lemma 8.2 does
not hold for any θ, but E[Si(θ0)] = 0 since θ0 is the optimizer to
Q(θ) = E[lnf(Xi, θ)]. If you interchange the expectation and dif-
ferentiation, you will see that.] Second, Information Matrix Equality
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(Lemma 8.3) no longer holds. This will not change the structure of the proof
of Theorem 8.5 but make some of the simplification impossible. Note that

now 1√
n

∑n
i=1

∂lnf(Xi,θ0)
∂θ

d→ N(E[Si(θ0)], I(θ0)).

Therefore,
√
n(θ̂ − θ0)

d→ N([−H(θ0)]−1E[Si(θ0)], [H(θ0)]−1I(θ0)[H(θ0)]−1)

[Correction: this should be
√
n(θ̂−θ0)

d→ N([0, [H(θ0)]−1I(θ0)[H(θ0)]−1)
based on the correction above.]

14. Prove Theorem 8.9 and discuss the implication of the theorem.
Solution:

See page 445 of the textbook. The implication is that GMM estimator
achieve the lowest variance (or most efficient) by choosing the weighting
matrix to be V . In practice, everything about GMM is to get an estimate of
this V under different specification. You will spend a lot more time on this
in ECON 6200.

15. Suppose θ̂1, θ̂2 and θ̂3 are estimators of θ, and we know that E(θ̂1) =
E(θ̂2) = θ, E(θ̂3) 6= θ, var(θ̂1) = 12, var(θ̂2) = 10, and E(θ̂3− θ)2 = 6. Which
estimator is the best in terms of MSE criterion?
Solution:

MSE(θ̂1) = var(θ̂1) = 12,MSE(θ̂2) = var(θ̂2) = 10. MSE(θ̂3) = 6. So
3 > 2 > 1.

16. Let Xn be an IID U [0, θ] random sample, where θ is unknown. Define
two estimators of θ :

θ̂1 =
n+ 1

n
max
1≤i≤n

Xi,

θ̂2 =
2

n

n∑
i=1

Xi.

(1) Show P (max1≤i≤nXi ≤ t) = [FX(t)]n, where FX(·) is the CDF of the
population distribution U [0, θ];

(2) Compute Eθ(θ̂1) and varθ(θ̂1);
(3) Show θ̂1 converges to θ in probability;
(4) Compute Eθ(θ̂2) and varθ(θ̂2);
(5) Which estimator, θ̂1 or θ̂2, is more efficient? Explain.

Solution:
(1) P (maxiXi ≤ t) = P (Xi ≤ t, i = 1, ..., n) = FX(t)n

13



(2) Fist notice FmaxiXi(t) = FX(t)n. Then fmaxiXi(t) = F ′maxiXi(t) =

n( t
θ
)n−1 1

θ
. Then easy to calculate E(maxiXi) = n

n+1
θ. Therefore Eθ(θ̂1) = θ

and varθ(θ̂1) = 1
n(n+2)

θ2.

(3) MSE(θ̂1) = 1
n(n+2)

θ2 → 0 as n→∞. Hence θ̂1
p→ θ

(4) Eθ(θ̂2) = 2
n

∑
E(Xi) = 2

n
n θ

2
= θ and var(θ̂2) = 1

3n
θ2

(5) MSE(θ̂1) < MSE(θ̂2). Therefore θ̂1 is better.

17. An IID random sample Xn is taken from a population with mean µ and
variance σ2. Consider the following estimator of µ :

µ̂ =
2

n(n+ 1)

n∑
i=1

i ·Xi.

(1) Show µ̂ is unbiased for µ;
(2) Which estimator, µ̂ or X̄n, is more efficient? Explain. [Hint:

∑n
i=1 i =

n(n+1)
2

and
∑n

i=1 i
2 = n(n+1)(2n+1)

6
.]

Solution:
(1) E(µ̂) = 2

n(n+1)

∑n
i=1 iE(Xi) = µ 2

n(n+1)

∑n
i=1 i = µ 2

n(n+1)
n(n+1)

2
= µ, so

µ̂ is unbiased for µ.
(2) Both µ̂ and X̄ are unbiased to µ,

MSE(µ̂) = V ar(µ̂) = V ar(
2

n(n+ 1)

n∑
i=1

iXi)

=
4

n2(n+ 1)2

n∑
i=1

i2σ2 (Xi is i.i.d.)

= σ2 4

n2(n+ 1)2

n(n+ 1)(2n+ 1)

6

=
2(2n+ 1)

3n(n+ 1)
σ2

MSE(X̄) = V ar(X) =
σ2

n

MSE(µ̂)−MSE(X̄) =
2(2n+ 1)

3n(n+ 1)
σ2 − σ2

n

=
n− 1

3n(n+ 1)
σ2 > 0 for n > 1

14



So X̄ is more efficient for n > 1.

18. Suppose Xn is an IID N(0, σ2) random sample. Define

S2
n = (n− 1)−1

n∑
i=1

(Xi − X̄n)2,

where X̄n = n−1
∑n

i=1Xi; and

σ̂2 = n−1

n∑
i=1

X2
i .

Which estimator is more efficient? Give your reasoning.
Solution:

MSE(S2
n) = V ar(S2

n) = 2σ4

n−1
.

MSE(σ̂2) = Bias2 + var(σ̂2) = var(σ̂2) = 2σ4

n

Therefore,σ̂2 is more efficient.

19. Let X1, · · ·, Xn be an IID random sample from the following distribution:

P (X = −1) =
1− θ

2
, P (X = 0) =

1

2
, P (X = 1) =

θ

2
.

(1) Find the MLE of θ and check whether it is unbiased estimator;
(2) Find the method of moments estimator of θ;
(3) Calculate the Cramer-Rao lower bound for the variance of an unbiased

estimator of θ.
Solution:

(1) Xi follows categorical distribution with three outcomes. This is a
generalization of Bernoulli distribution. Given the iid sample, we can write
the joint PMF as

fXn(xn|θ) =
n∏
i=1

(
1− θ

2
)1(xi=−1)(

1

2
)1(xi=0)(

θ

2
)1(xi=1),
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where 1(·) is an indicator function. Then we can further write the log-
likelihood function as

lnL(θ|xn) = ln(
1− θ

2
)

n∑
i=1

1(xi = −1)

+ln(
1

2
)

n∑
i=1

1(xi = 0) + ln(
θ

2
)

n∑
i=1

1(xi = 1).

Check the FOC:

∂lnL(θ|xn)

∂θ
=
−1

1− θ

n∑
i=1

1(xi = −1) +
1

θ

n∑
i=1

1(xi = 1) = 0

Check the SOC:

∂2lnL(θ|xn)

∂2θ
=

−1

(1− θ)2

n∑
i=1

1(xi = −1)− 1

θ2

n∑
i=1

1(xi = 1) < 0.

By FOC, we have θ̂MLE =
∑n
i=1 1(Xi=1)∑n

i=1 1(Xi=1)+
∑n
i=1 1(Xi=−1)

=
∑n
i=1 1(Xi=1)

n−
∑n
i=1 1(Xi=0)

.

Denote a =
∑n

i=1 1(Xi = −1), b =
∑n

i=1 1(Xi = 0), and c =
∑n

i=1 1(Xi =

1), then we have θ̂MLE = c
a+c

= n−a−b
n−b . We can show that (a, b, c) follows

trinomial distribution with the following density

f(a, b, c) =
n!

a!b!c!
(
1− θ

2
)a(

1

2
)b(
θ

2
)c.

Since we want to calculate the expectation of θ̂MLE, we need to calculate
E(n−a−b

n−b ).

E(
n− a− b
n− b

) =
n∑
b=0

n−b∑
a=0

n− a− b
n− b

n!

a!b!(n− a− b)!
(
1− θ

2
)a(

1

2
)b(
θ

2
)n−a−b

=
n∑
b=0

n−b∑
a=0

n− a− b
n− b

Cb
nC

a
n−b(

1− θ
2

)a(
1

2
)b(
θ

2
)n−a−b

=
n∑
b=0

Cb
n(

1

2
)b

n−b∑
a=0

n− a− b
n− b

Ca
n−b(

1− θ
2

)a(
θ

2
)n−a−b
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For the summation of a, when a = n−b, the term n−a−b
n−b C

a
n−b(

1−θ
2

)a( θ
2
)n−a−b =

0. So we can change the upper bound of the summation from n−b to n−b−1,
we have

E(
n− a− b
n− b

) =
n∑
b=0

Cb
n(

1

2
)b
n−b−1∑
a=0

n− a− b
n− b

Ca
n−b(

1− θ
2

)a(
θ

2
)n−a−b

=
n∑
b=0

Cb
n(

1

2
)b
n−b−1∑
a=0

n− a− b
n− b

(n− b)!
(n− b− a)!a!

(
1− θ

2
)a(

θ

2
)n−a−b

=
n∑
b=0

Cb
n(

1

2
)b
n−b−1∑
a=0

(n− b− 1)!

(n− b− 1− a)!a!
(
1− θ

2
)a(

θ

2
)n−a−b

=
n∑
b=0

Cb
n(

1

2
)b
n−b−1∑
a=0

(n− b− 1)!

(n− b− 1− a)!a!
(
1− θ

2
)a(

θ

2
)n−a−b−1 × θ

2

=
θ

2

n∑
b=0

Cb
n(

1

2
)b
n−b−1∑
a=0

Ca
n−b−1(

1− θ
2

)a(
θ

2
)n−b−1−a

=
θ

2

n∑
b=0

Cb
n(

1

2
)b × (

1− θ
2

+
θ

2
)n−b−1

=
θ

2

n∑
b=0

Cb
n(

1

2
)b × (

1

2
)n−b−1

=
θ

2

n∑
b=0

Cb
n(

1

2
)b × (

1

2
)n−b × 2

= θ ×
n∑
b=0

Cb
n(

1

2
)b × (

1

2
)n−b

= θ × (
1

2
+

1

2
)n

= θ,

where we have make use of the following equality

(p+ q)n =
n∑
i=0

Ci
np

iqn−i.

Thus, the MLE is unbiased.
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Many of you show the unbiasedness by arguing

Eθ̂MLE = E

( ∑n
i=1 1(Xi = 1)

n−
∑n

i=1 1(Xi = 0)

)
= E(

A

B
) =

EA

EB
=

E
∑n

i=1 1(Xi = 1)

n− E
∑n

i=1 1(Xi = 0)
= θ,

where we let A =
∑n

i=1 1(xi = 1) and B = n −
∑n

i=1 1(xi = 0). This
argument is WRONG! Since in general, E(A

B
) 6= EA

EB
= θ. Therefore,

you need to calculate the expectation using definition.
(2) For the Method of Moment Estimator, we just need to match the first

moment because E(X) = −1× 1−θ
2

+ 1× θ
2

= θ − 1
2
. So we have

1

n

n∑
i=1

Xi = θ̂MME −
1

2
.

Thus we have θ̂MME = 1
n

∑n
i=1 Xi + 1

2
. It is unbiased since E(θ̂MME) =

E(Xi) + 1/2 = θ − 1/2 + 1/2 = θ.

(3) Since only the θ̂MME is unbiased, so we just need to calculate the
Cramer-Rao lower bound for unbiased estimator. By definition, the Cramer-
Rao lower bound Bn(θ)

Bn(θ) =

[
dEθ( ̂θMME)

dθ

]2

Eθ

[
∂lnfXn (xn,θ)

∂θ

]2 .

The numerator is 1 given the MME estimator is unbiased. For the denomi-
nator, given i.i.d. and information matrix equality, we have

Bn(θ) =
1

−nEθ
[
∂2lnfXi (xi,θ)

∂2θ

] .
The log of marginal PMF is given by

lnfXi(xi, θ) = 1(xi = −1)ln(
1− θ

2
) + 1(xi = 0)ln(

1

2
) + 1(xi = 1)ln(

θ

2
).

Then we have

∂2lnfXi(xi, θ)

∂2θ
=

−1

(1− θ)2
1(xi = −1)− 1

θ2
1(xi = 1).
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By definition of indicator function, E(1(xi = 1)) = P (Xi = 1) = θ
2

and
E(1(xi = −1)) = P (Xi = −1) = 1−θ

2
. Then we have

E

[
∂2lnfXi(xi, θ)

∂2θ

]
=

−1

2(1− θ)
− 1

2θ
=

−1

2θ(1− θ)
.

Finally, we have the Cramer-Rao lower bound given by

Bn(θ) =
2θ(1− θ)

n
.

We can see that the MME estimator doesn’t achieve this lower bound since
V ar(θ̂MME) = 1

2n
≥ Bn(θ) = 2θ(1−θ)

n
.

20. Let X1, · · ·, Xn be an IID random sample from the population with PMF

f(x, θ) =

{
θ if x = 1
1− θ if x = 0,

where 0 < θ < 1.
(1) Find the MLE θ̂ of θ;
(2) Is θ̂ the best unbiased estimator of θ?

Solution:
(1) Let X be the number of Xi with value equals to 1. Then n − X

is the number of Xi with value equals to 0. Since Xi follow Bernoulli(p),
then X follows B(n, θ). Furthermore, L(θ|xn) = θX(1− θ)n−X . FOC implies

θ̂ = X/n. (2) E(θ̂) = E(X)/n = nθ/n = θ. So it is unbiased.

21. Put θ = (µ, σ2). A random variable X with PDF

f(x, θ) =
1√

2πσx
e−

(ln x−µ)2

2σ2 , 0 < x <∞,

is called a Lognormal (µ, σ2) random variable because its logarithm lnX is
N(µ, σ2), namely,

lnX ∼ N(µ, σ2).

Suppose {X1, · · ·, Xn} is an IID random sample from a Lognormal (µ, σ2)
population.

(1) Find the Maximum Likelihood Estimator (MLE) for (µ, σ2);
(2) Denote the MLE estimator for µ by µ̂. Is µ̂ the best unbiased estimator

of µ?
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Solution:
(1) The only difference between the estimators here and MLE for normal

distribution is substituting Xi by lnXi. Therefore, µ̂ =
∑
lnXi/n and σ̂2 =∑

(lnXi − µ̂)2/n
(2) First easy to see µ̂ is unbiased. var(µ̂) = σ2/n. Check the Cramer-

Rao Lower Bound by Corollary 8.1:

Bn(θ) =
1

−nH(θ)
=

1

−n(− 1
σ2 )

= σ2/n

So it is the best unbiased estimator.

22. Suppose Xn = (X1, · · ·, Xn) is an IID random sample from a Poisson(α)
distribution with probability mass function

fX(x) = e−α
αx

x!
for x = 0, 1, 2, · · ·,

where α is unknown.
(1) Find the MLE for α;
(2) Is the MLE for α the best unbiased estimator for α? Give your rea-

soning.
Solution:

(1) Given the i.i.d. data Xn, we can write the log-likelihood function as

lnL(α|xn) = −nα−
n∑
i=1

ln(xi!) + lnα
n∑
i=1

xi.

By FOC, we have

∂lnL(α|xn)

∂α
= −n+

1

α

n∑
i=1

xi = 0

we can have α̂MLE = 1
n

∑n
i=1 xi. Checking the SOC we have ∂2lnL(α|xn)

∂2α
=

−1
α2

∑n
i=1 xi < 0. Thus we have α̂MLE is a global maximizer.

(2) To check if the MLE is the best unbiased estimator for α, we need
to calculate the Cramer-Rao lower bound and compare it to the variance
of the MLE estimator. By similar argument, we just need to calculate the
expectation of the second order derivative of the log density function.

∂2lnfX(x)

∂2α
=
−1

α2
x.
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Then we have the denominator is given by

−nE
[
∂2lnfX(x)

∂2α

]
= −n−1

α2
EX =

n

α
.

And we have the Cramer-Rao lower bound Bn(α) = α
n
. Next, we need to

calculate V ar(α̂MLE):

V ar(α̂MLE) = V ar(
1

n

n∑
i=1

Xi)

=
1

n
V ar(X)

=
α

n
.

Since V ar(α̂MLE) = Bn(α), then the MLE achieves the Cramer-Rao lower
bound and is the best unbiased estimator for α.
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