
PROF HONG

Probability and Statistics

Chapter # 5

1.(#5.1) A joint PDF is defined by

fXY (x, y) =

{
c(x+ 2y), if 0 < y < 1 and 0 < x < 2,

0, otherwise.

(a) Find the value of c;

(b) Find the marginal PDF of X;

(c) Find the joint CDF of X and Y ;

Solution:

(a) To be a valid PDF,
∫ 1

0

∫ 2
0 C(x+ 2y)dxdy = 4C = 1, therefore C = 1

4

(b) fX(x) =

{ ∫ 1
0

1
4(x+ 2y)dy = x+1

4 , 0 < x < 2

0, otherwise

(c) FXY (x, y) =
∫ y

0

∫ x
0

1
4(x+ 2y)dxdy = 1

8x
2y + 1

4xy
2,if 0 < x < 2 and 0 < y < 1

FXY (x, y) =
∫ 1

0

∫ x
0

1
4(x+ 2y)dxdy = 1

8x
2 + 1

4x,if 0 < x < 2 and y ≥ 1

FXY (x, y) =
∫ y

0

∫ 2
0

1
4(x+ 2y)dxdy = 1

2y + 1
2y

2,if x ≥ 2 and 0 < y < 1

FXY (x, y) = 1,if x ≥ 2 and y ≥ 1

FXY (x, y) = 0,otherwise

2.(#5.2) Suppose (X,Y ) has a joint pdf

fXY (x, y) =

{
1 + θx if − y < x < y, 0 < y < 1

0 otherwise,

where θ is a constant.

(a) Determine the possible value(s) of θ so that fXY (x, y) is a joint PDF. Give your reasoning;

(b) Let θ = 0. Check if X and Y are independent. Give your reasoning.

Solution:
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(a) First notice
∫ 1

0

∫ y
−y(1 + θx)dxdy = 1 for any θ. Also we have fXY (x, y) ≥ 0. From the

support, we know −1 < x < 1. Suppose θ ≥ 0, this implies 1 − θ < 1 + θx < 1 + θ.

fXY (x, y) ≥ 0 implies 0 ≤ θ ≤ 1. Similarly when theta ≤ 0. In conclusion, we have

θ ∈ [−1, 1].

(b) fX(x) =
∫ 1
−x 1dy = 1 + x if −1 < x < 0 and fX(x) =

∫ 1
x 1dy = 1 − x if 0 < x < 1.

So fX(x) = 1 − |x| when −1 < x < 1. fY (y) =
∫ y
−y 1dx = 2y for 0 < y < 1. Since

fXY (xy) 6= fX(x)fY (y), they are not independent.

3.(#5.4)

(a) Find P (X >
√
Y ) if X and Y are jointly distributed with PDF fXY (x, y) = x + y for

0 ≤ x ≤ 1, 0 ≤ y ≤ 1;

(b) Find P (X2 < Y < X) if X and Y are jointly distributed with PDF fXY (x, y) = 2x for

0 ≤ x ≤ 1, 0 ≤ y ≤ 1.

Solution:

(a) P (X >
√
Y ) =

∫ 1
0

∫ x2
0 (x+ y)dydx = 7

20

(b) P (X2 < Y < X) =
∫ 1

0

∫ x
x2 2xdydx = 1

6

4.(#5.5) Prove that if the jointly CDF of X and Y satisfies FXY (x, y) = FX(x)FY (y) , that is,

if X and Y are independent, then for any pair of intervals (a, b) and (c, d), P (a ≤ X ≤ b, c ≤
Y ≤ d) = P (a ≤ X ≤ b)P (c ≤ Y ≤ d).

Solution:

Let a−1 = a when X is continuous and and a−1 = argmaxx∈ΩXandx<a(x − a) when X is

discrete. Define c−1 = c when Y is continuous and and c−1 = argmaxy∈ΩY andy<c(y − c) when

Y is discrete.

P (a ≤ X ≤ b, c ≤ Y ≤ d) = P (X ≤ b, c ≤ Y ≤ d)− P (X ≤ a−1, c ≤ Y ≤ d)

= P (X ≤ b, Y ≤ d)− P (X ≤ b, Y ≤ c−1)− P (X ≤ a−1, Y ≤ d)

+P (X ≤ a−1, Y ≤ c−1)

= F (b, d)− F (b, c−1)− F (a−1, d) + F (a−1, c−1)

= FX(b)FY (d)− FX(b)FY (c−1)− FX(a−1)FY (d)

+FX(a−1)FY (c−1)

= P (X ≤ b)[P (Y ≤ d)− P (Y ≤ c−1)]− P (X ≤ a−1)[P (Y ≤ d)− P (Y ≤ c−1)]

= P (X ≤ b)P (c ≤ Y ≤ d)− P (X ≤ a−1)P (c ≤ Y ≤ d)

= P (a ≤ X ≤ b)P (c ≤ Y ≤ d)
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5.(#5.9) Suppose g(x) ≥ 0 and
∫∞

0 g(x)dx = 1, show that f(x, y) =
2g(
√
x2+y2)

π
√
x2+y2

, for x, y > 0,

is a joint PDF.

Solution:

(i) It is trivial that f(x, y) ≥ 0. (ii) Substituting x and y with r cos θ and r sin θ respectively,

we obtain∫ ∞
0

∫ ∞
0

f(x, y)dxdy =

∫ π/2

0

∫ ∞
0

2g(r)

πr
rdrdθ =

2

π

∫ π/2

0

∫ ∞
0

g(r)drdθ =
2

π

∫ π/2

0
1dθ = 1

6. Suppose a joint PDF is

fXY (x, y) =

{
kx, 0 < x < 1, 0 < y < 1− x,
0, otherwise.

Find (a) the value of k; (b) the marginal PDF fX (x); (c) the marginal PDF fY (y); (d) the

conditional PDF of Y given X = x; (e)the conditional PDF of X given Y = y; (f)check if X

and Y are independent.

Solution:

(a)
∫ 1

0

∫ 1−x
0 kxdydx = k

6 = 1, therefore k = 6.

(b) fX(x) =

{ ∫ 1−x
0 6xdy = 6x− 6x2, 0 < x < 1

0, otherwise

(c) fY (y) =

{ ∫ 1−y
0 6xdx = 3(1− y)2, 0 < y < 1

0, otherwise

(d) fY |X(y|x) =
fX,Y (x,y)
fY (y) =

{
1

1−x , 0 < y < 1− x, 0 < x < 1

0, otherwise

(e) fX|Y (x|y) =
fX,Y (x,y)
fX(x) =

{
2x

(1−y)2
, 0 < y < 1− x, 0 < x < 1

0, otherwise

(f) X and Y are not independent.

7.(#5.10) Suppose (X,Y ) has a joint PDF

fXY (x, y) = ke−y for 0 < x < y <∞

Find (a) the value of k; (b) the marginal PDF fX (x); (c) the marginal PDF fY (y); (d) the

conditional PDF of Y given X = x; (e)the conditional PDF of X given Y = y.

Solution:
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(a)
∫∞

0

∫ y
0 ke

−ydxdy =
∫∞

0 kye−ydy = k = 1, therefore k = 1.

(b) fX(x) =

{ ∫∞
x e−ydy = e−x, x > 0

0, otherwise

(c) fY (y) =

{ ∫ y
0 e
−ydx = ye−y, y > 0

0, otherwise

(d) fY |X(y|x) =
fX,Y (x,y)
fY (y) =

{
ex−y, 0 < x < y <∞
0, otherwise

(e) fX|Y (x|y) =
fX,Y (x,y)
fX(x) =

{
1
y , 0 < x < y <∞
0, otherwise

8.(#5.11) (X,Y ) follows a bivariate normal distribution if their joint PDF

fXY (x, y) =
1

2πσ1σ2

√
1− ρ2

e
− 1

2(1−ρ2)

[(
x−µ1
σ1

)2
−2ρ

(
x−µ1
σ1

)(
y−µ2
σ2

)
+
(
y−µ2
σ2

)2
]
,

where −∞ < µ1, µ2 <∞, 0 < σ1, σ2 <∞,−1 ≤ ρ ≤ 1. Find

(a)fX(x); (b)fY (y); (c)fY |X(y|x); (d)fX|Y (x|y); (e)Under what conditions on parameters (µ1, µ2, σ
2
1, σ

2
2, ρ),

X and Y will be independent. [Hint: When finding fX(x), you can form a term with form

z2 =

[(
y − µ2

σ2

)
− ρ

(
x− µ1

σ1

)]2

and integrate it out first.]

Solution: [See Chapter 5 section 5.6 pages 149-151.]

9.(#5.6) The random pair (X,Y ) has the joint distribution

X

1 2 3

2 1
12

1
6

1
12

Y 3 1
6 0 1

6

4 0 1
3 0

(a) Show that X and Y are dependent;

(b) Give a probability table for random variables U and V that have the same marginals as

X and Y but are independent.

Solution:
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(a) To show X and Y are dependent, we can first calculate the marginal pmfs, by summing

corresponding rows or columns. We have

fX(x) =


1
4 , x = 1
1
2 , x = 2
1
4 , x = 3

0, otherwise

and fY (y) =


1
3 , x = 2
1
3 , x = 3
1
3 , x = 4

0, otherwise

It is easy to see that fXY (x, y) 6= fX(x)fY (y). Thus X and Y are not independent of each

other.

(b) The probability table for random variable U and V independent is:

U

1 2 3

2 1
12

1
6

1
12

V 3 1
12

1
6

1
12

4 1
12

1
6

1
12

10.(#5.7) Suppose X and Y are independent N(0,1) random variables.

(a) Find P (X2 + Y 2 < 1);

(b) Find P (X2 < 1), after verifying that X2 is distributed χ2
1.

Solution:

(a) By Example 5.21 of the textbook, we know the distribution of U = X2 + Y 2 is fU (u) =
1
2e
−u

2 when u > 0 and 0 otherwise. So P (U < 1) =
∫ 1

0
1
2e
−u

2 du = 1− e−1/2.

(b) Using the transformation result, easy to see it follows the pdf of χ2
1. Then P (X2 < 1) =

1
π (1− 1/e)ln(

√
2 + 1).

11.(#5.8) Let X be an exponential(1) random variable, and define Y to be the integer part of

X + 1, that is Y = i+ 1 if and only if i ≤ X < i+ 1, i = 0, 1, 2, ...

(a) Find the distribution of Y . What well-known distribution does Y have?

(b) Find the conditional distribution of X − 4 given Y ≥ 5.

Solution:
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(a) Since Y is a discrete random variable, to find the distribution of Y , we just need to find

the probability weighting in terms of X for Y taking value y. When Y = y, X takes

value from y − 1 to y. Thus P (Y = y) = P (1 − y ≤ X ≤ y) =
∫ y
y−1 e

−xdx = −e−x|yy−1 =

e−(y−1)−e−y = (e−1)e−y = (1− 1
e )e1−y = (1− 1

e )(1
e )y−1, for y = 1, 2, 3, ...., and 0 elsewhere.

Thus Y follows Geometric distribution with p = 1− 1
e .

(b) Y ≥ 5 ⇐⇒ X ≥ 4. The conditional distribution ofX − 4 given Y ≥ 5 is the same with

conditional distribution of X − 4 given X ≥ 4. Define Z = X − 4, then we try to find

FZ|X≥4(z|x ≥ 4).

By definition,

FZ|X≥4(z|x ≥ 4) = P (Z ≤ z|X ≥ 4)

= P (X − 4 ≤ z|X ≥ 4)

=
P (X ≤ z + 4, X ≥ 4)

P (X ≥ 4)

=
P (4 ≤ X ≤ z + 4)

1− P (X ≤ 4)

=
P (X ≤ z + 4)− P (X ≤ 4)

1− P (X ≤ 4)

=
1− e−(z+4) − (1− e−4)

1− (1− e−4)

=
e−4 − e−(z+4)

e−4

= 1− e−z.

We can see that the new random variable Z = X − 4 conditioning on X ≥ 4 has an

exponential distribution with rate parameter to be 1. Thus, the conditional distribution of

X − 4 given X ≥ 4 has identical distribution to X. We call this the memoryless property

of exponential distribution.

12.(#5.13) Suppose the random variables X and Y have the following joint pdf

fXY (x, y) =

{
8xy for 0 ≤ x ≤ y ≤ 1

0 otherwise.

Also, let U = X/Y and V = Y. Determine the joint pdf of U and V.

Solution:

First notice the support is ΩU,V = {(u, v) ∈ R2, 0 ≤ u ≤ 1, 0 ≤ v ≤ 1}. And Jacobian

JXY (u, v) = v. Therefore the joint distribution of fUV (u, v) = 8uv3 on ΩU,V and 0 elsewhere.

13.(#5.14) (1) Let X1 and X2 be independent N(0,1) random variables. Find the PDF of

(X1 − X2)2/2. (2) If Xi, i = 1, 2,are independent Gamma(αi, 1) random variables, find the
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marginal distributions of X1/(X1 +X2) and X2/(X1 +X2).

Solution:

(a) • To solve this question, it is crucial to define the ”right” U and V . If we define U

to be (X1−X2)2

2 , then we run into a problem, since no matter how we define V , the

mapping is not one-to-one. Thus, let’s first focus on the distribution of X1−X2√
2

. The

intuition is that X1 and X2 are both standard normal random variable and they are

independent of each other. Then X1−X2 will also be a normal random variable with

variance to be 2. Then X1−X2√
2

should be a standard normal random variable and its

square should be a chi-square random variable with degree of freedom 1. With this

reasoning, we first construct a bivariate transformation as following:

U =
X1 +X2√

2

V =
X1 −X2√

2

• The support of (U,V) is ΩU,V = {(u, v) ∈ R2,−∞ < u <∞,−∞ < v <∞}.

• Jacobian JXY (u, v) is computed as following:

JX,Y (u, v) =

∣∣∣∣∣
1√
2

1√
2

1√
2
− 1√

2

∣∣∣∣∣ = 1.

• Apply the Bivariate Transformation Theorem, we have the joint distribution of (u,v)

is:

fU,V (u, v) = fX,Y (x, y)
1

|JU,V (x, y)|

=
1

2πσ2
exp(− 1

2σ2
(x2 + y2))

=
1

2πσ2
exp(− 1

2σ2
(
(u+ v)2

2
+

(u− v)2

2
))

=
1

2πσ2
exp(− u2

2σ2
− v2

2σ2
)

=
1√

2πσ2
exp(− u2

2σ2
)

1√
2πσ2

exp(− v2

2σ2
)

= fU (u)fV (v)

It follows that U ∼ N(0, 1) and V ∼ N(0, 1). Random variables U and V are

independent. (X1−X2)2

2 = V 2 ∼ χ2(1).

(b) • From U = X1
X1+X2

and V = X1 +X2, we have X1 = UV and X2 = (1− U)V .

• The support of (U, V ) is ΩU,V = {0 < u < 1, and 0 < v <∞}.

7



• The Jacobian JX1,X2(u, v) is:

JX1,X2(u, v) =

∣∣∣∣∣ v u

−v (1− u)

∣∣∣∣∣ = v.

• Applying the Bivariate Transformation Theorem,

fU,V (u, v) = fX1,X2(x1, x2)|JX1,X2(u, v)|

=
1

Γ(α1)
xα1−1

1 e−x1
1

Γ(α2)
xα2−1

2 e−x2v

=
1

Γ(α1)
(uv)α1−1e−uv

1

Γ(α2)
(1− u)α2−1vα2−1e−(1−u)vv

= [
Γ(α1 + α2)

Γ(α1)Γ(α2)
uα1−1(1− u)α2−1][

1

Γ(α1 + α2)
vα1+α2−1e−v]

This implies that

fU (u) =
Γ(α1 + α2)

Γ(α1)Γ(α2)uα1−1(1− u)α2−1

Thus, U = X1
X1+X2

∼ beta(α1, α2). Similarly, we can show that X2
X1+X2

∼ beta(α2, α1)

from a bivariate transformation when we define U = X2
X1+X2

and V = X1 +X2.

14.(#5.15) Suppose X1, X2 are independent standard Gamma random variables, possibly with

different parameters α1, α2. Show:

(a) The random variables

X1 +X2 and
X1

X1 +X2

are mutually independent;

(b) The distribution of X1 +X2 is a standard Gamma with α = α1 + α2;

(c) The distribution of X1/(X1 +X2) is a standard Beta with parameters α1, α2.

Solution:

Similar to part(2) of Question 5.14.

15.(#5.25) Suppose X1 ∼ Gamma(α1, 1), X2 ∼ Gamma(α2, 1), and X1 and X2 are inde-

pendent. Show that X1 + X2 and X1/(X1 + X2) are independent. Also, find the marginal

distributions of X1 +X2 and X1/(X1 +X2), respectively.

Solution:

From problem 13’s result,

fUV (u, v) = [
Γ(α1 + α2)

Γ(α1)Γ(α2)
uα1−1(1− u)α2−1][

1

Γ(α1 + α2)
vα1+α2−1e−v]
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for 0 < u < 1, and 0 < v <∞.

It can be written as a produce of function of u and function of v. Thus U and V are

independent. It follows that

fU (u) =
Γ(α1 + α2)

Γ(α1)Γ(α2)
uα1−1(1− u)α2−1

fV (v) =
1

Γ(α1 + α2)
vα1+α2−1e−v

for 0 < u < 1, and 0 < v < ∞, respectively. Thus we know U = X2
X1+X2

and V = X1 + X2

are independent of each other and U = X2
X1+X2

follows beta(α1, α2) and V = X1 + X2 follows

Gamma(α1 + α2, 1).

16.(#5.16) X1 and X2 are independent N(0, σ2) random variables.

(1) Find the joint distribution of Y1 and Y2, where Y1 = X2
1 +X2

2 and Y2 = X1/
√
Y1.

(2) Show that Y1 and Y2 are independent.

Solution:

You can read Chapter 5 Example 21 to solve this question. When you solve this one, you have

to change your notation.

(a) • Find we need to find out the support for Y1 and Y2: from Y1 = X2
1 + X2

2 , and

Y2 = X1√
X2

1+X2
2

, and X1 ∼ N(0, σ2), X2 ∼ N(0, σ2), we can derive the support for

(Y1, Y2) as:

ΩY1,Y2 = {(y1, y2) ∈ R2 : 0 < y1 <∞,−1 < y2 < 1}.

• Be careful, Bivariate Transformation Theorem doesn’t apply here!, since

(Y1, Y2) is not a 1-1 mapping from (X1, X2). For the distribution of Z = X2
2 , we

have for the CDF of Z, ∀z ∈ ΩZ = {z ∈ [0,∞)}:

FZ(z) = P (X2
2 ≤ z)

= P (−
√
z ≤ X2 ≤

√
z)

= FX2(
√
z)− FX2(−

√
z)

The pdf of Z is:

fZ(z) =
dFZ(z)

dz

= fX2(
√
z)

1

2
√
z

+ fX2(−
√
z)

1

2
√
z

=
1√

2πzσ2
e−

z
2σ2 , for z ∈ [0,∞)

and 0, elsewhere.
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• X1 is independent of X2, then X2 is also independent of Z ≡ X2
2 . The joint pdf of

(X1, Z) is:

fX1,Z(x1, z) =
1

2πσ2
√
z
e−x

2/2σ2
e−z/2σ

2

The support of (X1, Z) is ΩX1,Z = {(x1, z) ∈ R2,−∞ < x1 < −∞, 0 ≤ z < ∞}.
After substituting X2

2 by Z, we can do the following transformation:

Y1 = X2
1 + Z

Y2 =
X1√
X2

1 + Z

then,

X1 =
√
Y1Y2

Z = Y1(1− Y 2
2 )

• The Jacobian JX1,Z(y1, y2) is:

JX1,Z(y1, y2) =

∣∣∣∣∣
y2

2
√
y1

√
y1

1− y2
2 −2y1y2

∣∣∣∣∣ = −√y1.

• Using Bivariate Transformation Theorem, we have:

fY1,Y2(y1, y2) = fX1,Z(x1, z)|JX1,Z(y1, y2)|

=
1

2πσ2
√

1− y2
2

e−
y1
2σ2 , for (y1, y2) ∈ ΩY1Y2

and 0 otherwise.

(b) Y1 and Y2 are independent, because, the joint distribution equals the product of the

marginal distribution for all (y1, y2) ∈ ΩY1Y2 . First calculate the marginal pdf of Y1:

fY1(y1) =

∫ 1

−1

1

2πσ2
√

1− y2
2

e−
y1
2σ2 dy2

=
1

2σ2
e−

y1
2σ2

∫ 1

−1

1

π
√

1− y2
2

dy2

=
1

2σ2
e−

y1
2σ2

∫ 0

π

1

π
√

1− cos(θ)2
dcos(θ)

=
1

2σ2
e−

y1
2σ2

∫ 0

π

1

πsin(θ)
(−sin(θ))dθ

=
1

2σ2
e−

y1
2σ2 (− 1

π
)θ|0π

=
1

2σ2
e−

y1
2σ2 , for y1 ∈ (0,∞),
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and 0, elsewhere. Actually, we can see that Y1 follows Exponential( 1
2σ2 ). By the same

logic, we can show that

fY2(y2) =
1

π
√

1− y2
2

, for y2 ∈ (−1, 1)

and 0, elsewhere. Then we can prove Y1 and Y2 are independent of each other since

fY1Y2(y1, y2) = fY1(y1)fY2(y2).

You can also prove independence by factorization theorem like the lecture note

does, however, you have to show that the result holds for all (y1, y2) pair in the

R2 space.

17.(#5.17) For X ∼ Beta(α, β), and Y ∼ Beta(α + β, γ) be independent random variables,

find the distribution of XY by making the transformation given in (1) and (2) and integrating

out V .

(a) U = XY, V = Y .

(b) U = XY, V = X/Y .

Solution:

(a) From U = XY and V = Y, we have X = U
V and Y = V. We can first find the support is

0 < u < v < 1.

The determinant of Jacobian matrix is:

| det JXY (u, v)| =

∣∣∣∣∣det

[
1
v − u

v2

0 1

]∣∣∣∣∣ =
1

v

It follows that

fUV (u, v) = fXY (x, y)|JXY (u, v)| = fXY (x, y)
1

v

=
Γ(α+ β)

Γ(α)Γ(β)
xα−1(1− x)β−1 Γ(α+ β + γ)

Γ(α+ β)Γ(γ)
yα+β−1(1− y)γ−1 1

v

=
Γ(α+ β + γ)

Γ(α)Γ(β)Γ(γ)
(
u

v
)α−1(1− u

v
)β−1vα+β−1(1− v)γ−1 1

v
, 0 < u < v < 1

Then,

fU (u) =

∫ 1

u
fUV (u, v)dv

=
Γ(α+ β + γ)

Γ(α)Γ(β)Γ(γ)
uα−1

∫ 1

u
vβ−1(

v − u
v

)β−1(1− v)γ−1dv
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Let z = v−u
1−u , we have dz = dv

1−u , 1− v = (1− y)(1− u) and v−u
v = z(1−u)

v . Thus

fU (u) =
Γ(α+ β + γ)

Γ(α)Γ(β)Γ(γ)
uα−1

∫ 1

0
vβ−1(1− z)γ−1(1− u)γ−1 z

β−1(1− u)β−1

vβ−1
(1− u)dz

=
Γ(α+ β + γ)

Γ(α)Γ(β)Γ(γ)
uα−1(1− u)β+γ−1

∫ 1

0
(1− z)γ−1zβ−1dz

=
Γ(α+ β + γ)

Γ(α)Γ(β)Γ(γ)
uα−1(1− u)β+γ−1 Γ(β)Γ(γ)

Γ(β + γ)

=
Γ(α+ β + γ)

Γ(α)Γ(β + γ)
uα−1(1− u)β+γ−1, 0 < u < 1

Thus, U ∼ beta(α, β + γ).

(b) From U = XY and V = X/Y, we have X =
√
UV and Y =

√
U
V . The support of (U, V )

is 0 < u < v < 1/u and 0 < u < 1.

The determinant of Jacobian matrix is:

| det JXY (u, v)| =

∣∣∣∣∣det

[
1
2

√
v
u

1
2

√
u
v

1
2

√
1
uv −1

2

√
u
v3

]∣∣∣∣∣ =
1

2v

It follows that

fUV (u, v) = fXY (x, y)|JXY (u, v)| = fXY (x, y)
1

2v

=
Γ(α+ β)

Γ(α)Γ(β)
xα−1(1− x)β−1 Γ(α+ β + γ)

Γ(α+ β)Γ(γ)
yα+β−1(1− y)γ−1 1

2v

=
Γ(α+ β + γ)

Γ(α)Γ(β)Γ(γ)

√
uv

α−1
(1−

√
uv)β−1

√
u

v

α+β−1

(1−
√
u

v
)γ−1 1

2v

The set {0 < x < 1, 0 < y < 1} is mapped onto the set {0 < u < v < 1
u , 0 < u < 1}. Then,

fU (u) =

∫ 1/u

u
fUV (u, v)dv

=
Γ(α+ β + γ)

Γ(α)Γ(β)Γ(γ)
uα−1(1− u)β+γ−1

∫ 1/u

u
(
1−
√
uv

1− u
)β−1(

1−
√

u
v

1− u
)γ−1

×
√

u
v

β

2v(1− u)
dv

=
Γ(α+ β + γ)

Γ(α)Γ(β)Γ(γ)
uα−1(1− u)β+γ−1

∫ 1/u

u
(

√
u
v − u

1− u
)β−1(1−

√
u
v − u

1− u
)γ−1

×
√

u
v

2v(1− u)
dv
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Let z =

√
u
v
−u

1−u , we have dz = −
√

u
v

2(1−u)vdv. Thus

fU (u) =
Γ(α+ β + γ)

Γ(α)Γ(β)Γ(γ)
uα−1(1− u)β+γ−1

∫ 1

0
zβ−1(1− z)γ−1dz

=
Γ(α+ β + γ)

Γ(α)Γ(β)Γ(γ)
uα−1(1− u)β+γ−1 Γ(α)Γ(β)

Γ(α+ β)

=
Γ(α+ β + γ)

Γ(α)Γ(β + γ)
uα−1(1− u)β+γ−1, 0 < u < 1

Thus, U ∼ beta(α, β + γ).

18.(#5.18) Let X ∼ N(µ, σ2), and let Y ∼ N(γ, σ2). Suppose X and Y are independent.

Define U = X + Y and V = X − Y . Show that U and V are independent normal random

variables. Find the distribution of each of them.

Solution:

Let Z = Y + (µ − γ). Then X and Z are independent and Z ∼ N(µ, σ2). From the result

of Chapter 5 example 22, X + Z ∼ N(2µ, 2σ2), X − Z ∼ N(0, 2σ2), and X + Z,X − Z are

independent. It implies that U = X + Z − (µ− γ) ∼ N(µ+ γ, 2σ2), V = X − Z + (µ− γ) ∼
N(µ− γ, 2σ2) are also independent, since adding constant does not change independence.

19.(#5.20) Suppose X1 ∼ N(0, 1), X2 ∼ N(0, 1) and X1 and X2 are independent. Find the

distribution of X1/X2.

Solution:

From U = X1/X2 and V = X2, we have X1 = UV and X2 = V. The support for (U, V ) is

−∞ < u <∞ and −∞ < v <∞. The determinant of Jacobian matrix is:

|det JX1X2(u, v)| =

∣∣∣∣∣det

[
v u

0 1

]∣∣∣∣∣ = |v|

It follows that

fUV (u, v) = fX1X2(x1, x2)|JX1X2(u, v)| = fX1X2(x1, x2)|v|

=
1√
2π
e−x

2
1/2

1√
2π
e−x

2
2/2|v|

=
|v|
2π
e−(u2+1)v2/2

13



Then,

fU (u) =

∫ ∞
−∞

fUV (u, v)dv

=

∫ ∞
−∞

|v|
2π
e−(u2+1)v2/2dv

=

∫ 0

−∞

−v
2π

e−(u2+1)v2/2dv +

∫ ∞
0

v

2π
e−(u2+1)v2/2dv

= 2

∫ ∞
0

v

2π
e−(u2+1)v2/2dv

=
1

π

∫ ∞
0

ve−(u2+1)v2/2dv

let z = (u2 + 1)v2/2, then we have dz
dv = v(u2 + 1), thus we have dv = dz

v(u2+1)
. Also, we

have e−(u2+1)v2/2 = e−z. Substituting them back to fU (u), we have

fU (u) =
1

π

∫ ∞
0

ve−z
dz

v(u2 + 1)

=
1

π(u2 + 1)

∫ ∞
0

e−zdz

=
1

π(u2 + 1)
[−ez|∞0 ]

=
1

π(u2 + 1)
for u ∈ (−∞,∞)

Thus, U ∼ Cauchy(0, 1).

20.(#5.21) Let Z1, Z2 be independent standard normal random variables. Define

X = µ1 + aZ1 + bZ2,

Y = µ2 + cZ1 + dZ2,

where constants a, b, c, d satisfy the restrictions that

a2 + b2 = σ2
1,

c2 + d2 = σ2
2,

ac+ bd = ρσ1σ2.

Show that (X,Y ) ∼ BN(µ1, µ2, σ
2
1, σ

2
2, ρ).

Solution:

Representing Z1 and Z2 using X and Y :

Z1 =
dµ1 − bµ2 + bY − dX

bc− ad

Z2 =
aµ2 − cµ1 + cX − aY

bc− ad

14



Therefore |detJZ1Z2(x, y)| = |ad−bc|
(bc−ad)2

= 1
|bc−ad| = 1

σ1σ2
√

1−ρ2

fXY (x, y) = fZ1Z2(z1, z2)|detJZ1Z2(x, y)|

=
1√
2π
e−

z21
2

1√
2π
e−

z22
2

1

|bc− ad|

=
1

2πσ1σ2

√
1− ρ2

e−
1
2

(dµ1 − bµ2)2 + b2Y 2 + d2X2 − bdXY + (aµ2 − cµ1)2 + cX2 + aY 2 − acXY
(bc− ad)2

=
1

2πσ1σ2

√
1− ρ2

e
− 1

2(1−ρ2)

[(
x−µ1
σ1

)2
+
(
y−µ2
σ2

)2
−2ρ

(
x−µ1
σ1

)(
y−µ2
σ2

)]

21.(#5.22) Let X and Y be two independent uniform random variables on [0, 1]. Show that

the random variables U = cos(2πX)
√
−2 lnY and V = sin(2πX)

√
−2 lnY are independent

standard normal random variables.

Solution:

This is the so called Box-Muller Transformation. Expressing X and Y in terms of U and

V :

X =
1

2π
tan−1

(
V

U

)
Y = e−(U2+V 2)/2

Then easy to see |detJXY (u, v)| = 1√
2π
e−u

2/2 1√
2π
e−v

2/2.

22.(#5.23) Find the PDF of X − Y, where X ∼ U [0, 1], Y ∼ U [0, 1], and X and Y are inde-

pendent.

Solution:

See Example 5.23 in section 5.5.

23.(#5.65) Suppose X has a probability density function

f(x) =

{
|x| −1 < x < 1

0 otherwise.

Let Y = X2.

(a) Find Cov(X,Y ); (b) Are X and Y independent? Give your reasoning.

Solution:

(a) Using the formula for covariance function, we have Cov(X,Y ) = EXY −EXEY = EX3−
EXEY . Here we can see that the density of X is symmetric about y−axis, then we expect
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the mean and third moment of X are 0. To see this, let k be an odd number, we calculate

E(Xk).

E(Xk) =

∫ 1

−1
xk|x|dx

=

∫ 0

−1
−xk+1dx+

∫ 1

0
xk+1dx

= − x
k+2

k + 2
|0−1 +

xk+2

k + 2
|10

=
−1

k + 2
+

1

k + 2
= 0

Thus, we know that all the odd moments of X are 0. Then we have cov(X,Y ) = 0.

(b) Are X and Y independent? No, because it is given that Y is a function of X. X and Y are

not independent even though they are uncorrelated.

24.(#5.44). Suppose (X,Y ) has a bivariate normal PDF

fXY (x, y) =
1

2π
√

1− ρ2
e
− 1

2(1−ρ2)
(x2−2ρxy+y2)

.

Show that corr(X,Y ) = ρ.

Solution:

We first compute the marginal density of X and Y separately. The marginal density of X, is:

fX(x) =

∫ ∞
−∞

1

2π
√

1− ρ2
e
− (x2−2ρxy+y2)

2(1−ρ2) dy

=
1√
2π

∫ ∞
−∞

1√
2π
√

(1− ρ)2
e
− y

2−2ρxy+(ρx)2+x2−(ρx)2

2(1−ρ2) dy

=
1√
2π
e−

x2

2 × 1√
2π(1− ρ2)

∫ ∞
−∞

e(y−ρx)2/2(1−ρ2)dy

=
1√
2π
e−

x2

2

Thus, X is N(0, 1). Similarly, Y ∼ N(0, 1). EX = EY = 0.

corr(X,Y ) = cov(X,Y )
σXσY

= EXY−0
1 = EXY . Then, we compute the covariance between X and

Y.

EXY =

∫ ∞
−∞

∫ ∞
−∞

xy
1

2π
√

(1− ρ2)
e
−x

2−2ρxy+y2

2(1−ρ2) dxdy

=
ρ√
2π

∫ ∞
−∞

x2e−
x2

2 dx

= ρ,
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where the second to las equality comes from that the the mean for a random variable Y that

follows N(ρx, 1− ρ2) is ρx, and the last equality is because the second moment of a standard

normal random variable is 1.

25. A normal distributed, denoted as N
(
µ, σ2

)
, random variable has the moment generating

function M(t) = eµt+
1
2
σ2t2 for −∞ < t < ∞. Suppose X ∼ N(µ1, σ

2
1), Y ∼ N(µ2, σ

2
2), and X

and Y are independent. Find the distribution of a1X + a2Y . Give your reasoning.

Solution:

Denote Z = a1X + a2Y , then we need to find the distribution for Z. By the uniqueness

theorem of MGF, we can identify the distribution of Z from its MGF.

MZ(t) = E
(
etZ
)

= E
(
et(a1X+a2Y )

)
= E

(
ea1tXea2tY

)
by independence = E

(
ea1tX

)
E
(
ea2tY

)
by definition of MGF = MX (a1t)MY (a2t)

= eµ1a1t+
1
2
σ2
1a

2
1t

2
eµ2a2t+

1
2
σ2
2a

2
2t

2

= e(µ1a1+µ2a2)t+ 1
2(σ2

1a
2
1+σ2

2a
2
2)t2

= eµt+
1
2
σ2t2

where µ = µ1a1 + µ2a2 and σ2 = σ2
1a

2
1 + σ2

2a
2
2. Then we know that Z = a1X + a2Y follows

normal distribution with mean µ1a1 + µ2a2 and variance σ2
1a

2
1 + σ2

2a
2
2 .

26. (# 5.47). Suppose the joint PDF of X,Y is a uniform PDF on the circle x2 + y2 ≤ 1.

Find (1) E(Y |X); (2) var(Y |X); (3) Are X and Y independent? Explain.

Solution:

(a) fX(x) =
∫ √1−x2
−
√

1−x2
1
πdy = 2

√
1−x2
π for −1 ≤ x ≤ 1. Then we easily get fY |X(y|x) = 1

2
√

1−x2 .

Therefore

E(Y |X) =

∫ √1−x2

−
√

1−x2
y

1

2
√

1− x2
dy

=
1

4
√

1− x2
(y2|

√
1−x2
−
√

1−x2) = 0

(b) Similarly we can calculate E(Y 2|X) = 1−x2
3 . Then

var(Y |X) = E(Y 2)− (E(Y |X))2

=
1− x2

3

17



(c) Since the conditional covariance is not a constant, X and Y are not independent.

27. Suppose (X,Y ) have a joint PDF

fXY (x, y) =

{
e−y, if 0 < x < y <∞,
0, otherwise.

(a) Find E(Y |X). Can you use X to predict E(Y |X)? Explain.

(b) Find V ar(Y |X). Can you use X to predict V ar(Y |X)? Explain.

Solution:

Since we are dealing with the conditional mean and conditional variance on X, we need first

calculate the marginal distribution of X.

fX(x) =

∫ ∞
x

e−ydy

= − e−y
∣∣∞
0

= e−x, for x ∈ (0,∞),

and 0 elsewhere. Next, we calculate the conditional pdf fY |X(y | x) :

fY |X(y | x) =
fXY (x, y)

fX(x)

= ex−y, for y ∈ (x,∞), x ∈ (0,∞)

and 0 elsewhere.

(a) By definition

E(Y | X) =

∫ ∞
x

yex−ydy

= ex
∫ ∞
x

ye−ydy

= ex
∫ ∞
x

(−y)de−y

= ex
[

(−y)e−y
∣∣∞
0

+

∫ ∞
x

e−ydy

]
= ex

(
xe−x + e−x

)
= x+ 1, for x ∈ (0,∞)

Since the conditional mean function is a function of X, then we can use X to predict

E(Y | X).

18



(b) To find Var(Y | X), we need to first find E
(
Y 2 | X

)
.

E
(
Y 2 | X

)
=

∫ ∞
x

y2ex−ydy

= ex
∫ ∞
x

y2e−ydy

= ex
∫ ∞
x

(
−y2

)
de−y

= ex
[(
−y2

)
e−y
∣∣∞
0

+ 2

∫ ∞
x

ye−ydy

]
= ex

(
x2e−x + 2e−xx+ 2e−x

)
= x2 + 2x+ 2, for x ∈ (0,∞)

Then we know Var(Y | X) = E
(
Y 2 | X

)
− [E(Y | X)]2 = 1. Since the conditional variance

is a constant, we cannot use X to predict Var(Y | X)

28. Show that the conditional mean E(Y |X) is the optimal minimizer for the minimization

problem of the mean squared error E[Y − g(X)]2;that is

E(Y |X) = argminE[Y − g(X)]2,

where the minimization is over all measurable and square-integrable functions.

Solution: See Theorem 5.25 in textbook.

29. Let X and Y be two random variables and 0 < σ2
X <∞. Show that if E(Y |X) = a+ bX,

then b = cov(X,Y )/σ2
X .

Solution: We know Cov(X,Y ) = E(XY ) − EXEY . By Law of Iterated Expectation, we

have Cov(X,Y ) = E[XE(Y | X)]− EX E[E(Y | X)]. Give E(Y | X) = a+ bX, we have

Cov(X,Y ) = E[X(a+ bX)]− EXE(a+ bX)

= E
[
aX + bX2

]
− EX(a+ bEX)

= aEX + bEX2 − aEX − b(EX)2

= b
[
EX2 − (EX)2

]
= bσ2

X

Given 0 < σ2
X <∞, dividing σ2

X on both sides will give us b = Cov(X,Y )/σ2
X .

30. Suppose E(Y |X) = 1 + 2X and var(X) = 2. Find cov(X,Y ).

Solution: From the result in Q 22 note to change the order, we know Cov(X,Y ) =

b ∗Var(X). In this question, Var(X) = 2 and b = 2. Then we have Cov(X,Y ) = 2 ∗ 2 = 4.
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31.(# 5.50) Suppose X and Y are random vaiables such that E (E(Y |X) = 7 − 1
4X and

E (E(X|Y )) = 10− Y. Determine the correlation between X and Y .

Solution:

E(Y ) = E(E(Y |X)) = 7− 1

4
E(X)

E(X) = E(E(X|Y )) = 10− E(Y )

We get E(X) = 4 and E(Y ) = 6.

E(XY ) = E(E(XY |X)) = E(XE(Y |X))

= 7E(X)− 1

4
E(X2)

= 28− 1

4
(V ar(X) + E2(X))

= 24− 1

4
V ar(X)

=⇒ V ar(X) = 4(24− E(XY ))

E(XY ) = E(E(XY |Y )) = E(Y E(X|Y ))

= 10E(Y )− E(Y 2)

= 60− (V ar(Y ) + E2(Y ))

= 24− V ar(Y )

=⇒ V ar(Y ) = 24− E(XY )

Corr(X,Y ) =
Cov(X,Y )√
V ar(X)V ar(Y )

=
E(XY )− E(X)E(Y )√

V ar(X)V ar(Y )

=
E(XY )− 24√

(24− E(XY ))4(24− E(XY ))
= −1

2
.

32. Show var(Y |X) = E
(
Y 2|X

)
− [E(Y |X)]2.

Solution:
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By defintion

Var(Y | X = x) =

∫
[y − E(Y | X = x)]2 dFY |X(y | x)

=

∫ [
y2 − 2yE(Y | X = x) + E(Y | X = x)2

]
dFY |X(y | x)

=

∫
y2dFY |X(y | x)− 2E(Y | X = x)

∫
ydFY |X(y | x)

+ E(Y | X = x)2

∫
dFY |X(y | x)

=E
(
Y 2 | X = x

)
− 2E(Y | X = x)E(Y | X = x) + E(Y | X = x)2

=E
(
Y 2 | X = x

)
− E(Y | X = x)2

33.(# 5.60) For any two random variables X and Y with finite variances, show:

(a) cov(X,Y ) = cov (X,E(Y |X)).

(b) X and Y − E(Y |X) are uncorrelated.

(c) var [Y − E(Y |X)] = E [var(Y |X)] .

Solution:

(a)

Cov(X,E(Y |X)) = E(XE(Y |X))− E(X)E(E(Y |X)) = E(E(XY |X))− E(X)E(Y )

= E(XY )− E(X)E(Y ) = Cov(X,Y )

(b)

Cov(X,Y − E(Y |X)) = E(X(Y − E(Y |X)))− E(X)E(Y − E(Y |X))

= E(XY −XE(Y |X))− E(X)(E(Y )− E(E(Y |X)))

= E(XY )− E(E(XY |X))− E(X)(E(Y )− E(Y ))

= E(XY )− E(XY ) = 0

(c)

V ar(Y − E(Y |X)) = E(Y − E(Y |X))2 − E2(Y − E(Y |X))

= E(Y − E(Y |X))2

= E(Y 2 − 2Y E(Y |X) + E2(Y |X))

= E(E(Y 2|X)− 2E(Y |X)E(Y |X) + E2(Y |X))

= E(E(Y 2|X)− E2(Y |X)) = E(V ar(Y |X))
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34.(# 5.61) (a)Suppose E(Y |X) = E(Y ). Show cov(X,Y ) = 0. (b) Does cov(X,Y ) = 0 imply

E(Y |X) = E(Y )? If yes, prove it. If not, provide an example.

Solution:

(a)

Cov(X,Y ) = E(XY )− E(X)E(Y )

= E(E(XY |X))− E(X)E(Y )

= E(XE(Y |X))− E(X)E(Y )

= E(XE(Y ))− E(X)E(Y )

= E(X)E(Y )− E(X)E(Y )

= 0

(b) No. E(Y |X) = 1(|X − θ| < 2) varies with X.

35.(#5.32) Suppose the distribution of Y , conditional on X = x, is N(x, x2) and that the

marginal distribution of X is uniform(0,1).

(a) Find E(Y ), var(Y ), and cov(X,Y );

(b) Prove that Y/X and X are independent.

Solution:

(a) E(Y ) = E(E(Y |X)) = E(X) = 1/2

E(Y 2) = E(E(Y 2|X)) = 2E(X2) = 2/3

var(Y ) = E(Y 2)− E(Y )2 = 5/12

cov(X,Y ) = E(XY )− E(X)E(Y ) = E(X(E(Y |X)))− 1/4 = 1/12

(b) Let U = Y/X and V = X, easy to show that fUV (u, v) = 1√
2π
e−

(u−1)2

2 . By factorization

theorem, U and V are independent.

36.(#5.33) Consider two random variables (X,Y ). Suppose X is uniformly distributed over

(−1, 1), that is, the pdf of X is

fX(x) =

{
1
2 −1 < x < 1

0 otherwise.

Also, the conditional pdf of Y give X = x is

fY |X(y|x) =
1√
2π
e−

(y−α−βx)2
2 for −∞ < y <∞ and − 1 < x < 1 .
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Find: (a) E(Y ); (b) cov(X,Y ).

Solution:

(a) Since the conditional pdf of Y given X is a normal distribution, we know E(Y |X) = α+βX.

Then E(Y ) = E(E(Y |X)) = α

(b) cov(X,Y ) = E(XY )− E(X)E(Y ) = E(αX + βX2) = β/3

37.(#5.38) A generalization of the beta distribution is the Dirichlet distribution. In its bi-

variate version, (X,Y ) have a joint PDF fXY (x, y) = kxa−1yb−1(1 − x − y)c−1, 0 < x < 1,

0 < y < 1, 0 < y < 1− x < 1, where a > 0, b > 0, and c > 0 are constants.

(a) Show that k = Γ(a+b+c)
Γ(a)Γ(b)Γ(c) ;

(b) Show that, marginally, both X and Y are Beta;

(c) Find the conditional distribution of Y |X = x, and show that Y |(1−X) is Beta(b, c);

(d) Show that E(XY ) = ab
(a+b+c+1)(a+b+c) , and find the covariance cov(X,Y ).

Solution:

(a) Let z = y
1−x , we have ∫ ∫

fXY (x, y)dxdy = 1∫ 1

0

∫ 1−x

0
kxα−1yb−1(1− x− y)c−1dxdy = 1∫ 1

0

∫ 1

0
kxa−1zb−1(1− x)b−1(y/z − y)c−1(1− x)dzdx = 1

kB(a, b+ c)B(b, c) = 1

(b) Similar to part (a), we still let z = y
1−x :

fX(x) =

∫ 1

0
kxa−1(1− x)b+c+1zb−1(1− z)c−1dz

=
Γ(a+ b+ c)

Γ(a)Γ(b+ c)
xa−1(1− x)b+c−1

fY (y) is similar.

(c)

fXY (x, y)

fX(x)
=

Γ(b+ c)

Γ(b)Γ(c)

yb−1(1− x− y)c−1

(1− x)b+c−1
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for 0 < x < 1, 0 < y < 1, 0 < y < 1− x < 1. Let U = Y/(1−X) and V = 1−X. Easy to

show

fUV (u, v) =
Γ(a+ b+ c)

Γ(a)Γ(b+ c)
vb+c−1(1− v)a−1 Γ(b+ c)

Γ(b)Γ(c)
ub−1(1− u)c−1

Then

fU (u) =

∫ 1

0

Γ(a+ b+ c)

Γ(a)Γ(b+ c)
vb+c−1(1− v)a−1 Γ(b+ c)

Γ(b)Γ(c)
ub−1(1− u)c−1dv

=
Γ(b+ c)

Γ(b)Γ(c)
ub−1(1− u)c−1

∫ 1

0

Γ(a+ b+ c)

Γ(a)Γ(b+ c)
vb+c−1(1− v)a−1dv

=
Γ(b+ c)

Γ(b)Γ(c)
ub−1(1− u)c−1

for 0 < u < 1

(d)

E(XY ) = E(X(1−X)E(
Y

1−X
|X))

= E(X(1−X)
b

b+ c
)

=
b

b+ c
(

a

a+ b+ c
− a

a+ b+ c

a+ 1

a+ b+ c+ 1
)

= RHS

cov(X,Y ) = E(XY )− E(X)E(Y ) = RHS

38.(#5.45) Suppose (X,Y ) follows a standard bivariate normal distribution with correlation

coefficient ρ. Define U = (Y − ρX)/
√

1− ρ2. Show that U is normally distributed and inde-

pendent of X.

Solution: Let V = X. We have

fUV (u, v) = fXY (x, y)|det(JUV (x, y))|−1

=
1

2π
√

1− ρ2
e
− 1

2(1−ρ2)
(x2+y2−2ρxy)√

1− ρ2

=
1√
2π
e−u

2/2 1√
2π
e−v

2/2

By factorization theorem, U and X are independent. Also, fU (u) = 1√
2π
e−u

2/2
∫∞
−∞

1√
2π
e−v

2/2dv =
1√
2π
e−u

2/2.

39.(#5.57) Suppose (X,Y ) have a joint PDF

fXY (x, y) =

{
xe−y, if 0 < x < y <∞,
0, otherwise.
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(a) Find the conditional pdf fY |X(y|x) of Y given X = x.

(b) Find the conditional mean E(Y |x);

(c) Find the conditional variance var(Y |x);

(d) Are X and Y independent? Give your reasoning.

Solution:

(a) First get fX(x) = xe−x for 0 < x <∞. Then fY |X(y|x) = xe−y

xe−x = ex−y for 0 < x < y <∞.

(b)

E(Y |X) =

∫ ∞
x

yex−ydy

= x+ 1

(c) Similarly we get E(Y 2|X) = x2+2x+2. Then we have var(Y |X) = E(Y 2)−(E(Y |X))2 = 1

(d) fY (y) = 1
2y

2e−y for 0 < y <∞. Since fXY (x, y) 6= fX(x)fY (y), they are not independent.
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