PROF HONG

Probability and Statistics

Chapter \# 5

1.(\#5.1) A joint PDF is defined by

$$
f_{X Y}(x, y)= \begin{cases}c(x+2 y), & \text { if } 0<y<1 \text { and } 0<x<2 \\ 0, & \text { otherwise }\end{cases}
$$

(a) Find the value of c;
(b) Find the marginal PDF of X;
(c) Find the joint CDF of X and Y;

Solution:

(a) To be a valid PDF, $\int_{0}^{1} \int_{0}^{2} C(x+2 y) d x d y=4 C=1$, therefore $C=\frac{1}{4}$
(b) $f_{X}(x)= \begin{cases}\int_{0}^{1} \frac{1}{4}(x+2 y) d y=\frac{x+1}{4}, & 0<x<2 \\ 0, & \text { otherwise }\end{cases}$
(c) $F_{X Y}(x, y)=\int_{0}^{y} \int_{0}^{x} \frac{1}{4}(x+2 y) d x d y=\frac{1}{8} x^{2} y+\frac{1}{4} x y^{2}$, if $0<x<2$ and $0<y<1$
$F_{X Y}(x, y)=\int_{0}^{1} \int_{0}^{x} \frac{1}{4}(x+2 y) d x d y=\frac{1}{8} x^{2}+\frac{1}{4} x$, if $0<x<2$ and $y \geq 1$
$F_{X Y}(x, y)=\int_{0}^{y} \int_{0}^{2} \frac{1}{4}(x+2 y) d x d y=\frac{1}{2} y+\frac{1}{2} y^{2}$,if $x \geq 2$ and $0<y<1$
$F_{X Y}(x, y)=1$,if $x \geq 2$ and $y \geq 1$
$F_{X Y}(x, y)=0$, otherwise
2.(\#5.2) Suppose (X, Y) has a joint pdf

$$
f_{X Y}(x, y)= \begin{cases}1+\theta x & \text { if }-y<x<y, 0<y<1 \\ 0 & \text { otherwise }\end{cases}
$$

where θ is a constant.
(a) Determine the possible value(s) of θ so that $f_{X Y}(x, y)$ is a joint PDF. Give your reasoning;
(b) Let $\theta=0$. Check if X and Y are independent. Give your reasoning.

Solution:

(a) First notice $\int_{0}^{1} \int_{-y}^{y}(1+\theta x) d x d y=1$ for any θ. Also we have $f_{X Y}(x, y) \geq 0$. From the support, we know $-1<x<1$. Suppose $\theta \geq 0$, this implies $1-\theta<1+\theta x<1+\theta$. $f_{X Y}(x, y) \geq 0$ implies $0 \leq \theta \leq 1$. Similarly when thet $a \leq 0$. In conclusion, we have $\theta \in[-1,1]$.
(b) $f_{X}(x)=\int_{-x}^{1} 1 d y=1+x$ if $-1<x<0$ and $f_{X}(x)=\int_{x}^{1} 1 d y=1-x$ if $0<x<1$. So $f_{X}(x)=1-|x|$ when $-1<x<1$. $f_{Y}(y)=\int_{-y}^{y} 1 d x=2 y$ for $0<y<1$. Since $f_{X Y}(x y) \neq f_{X}(x) f_{Y}(y)$, they are not independent.
3. (\#5.4)
(a) Find $P(X>\sqrt{Y})$ if X and Y are jointly distributed with $\operatorname{PDF} f_{X Y}(x, y)=x+y$ for $0 \leq x \leq 1,0 \leq y \leq 1 ;$
(b) Find $P\left(X^{2}<Y<X\right)$ if X and Y are jointly distributed with $\operatorname{PDF} f_{X Y}(x, y)=2 x$ for $0 \leq x \leq 1,0 \leq y \leq 1$.

Solution:

(a) $P(X>\sqrt{Y})=\int_{0}^{1} \int_{0}^{x^{2}}(x+y) d y d x=\frac{7}{20}$
(b) $P\left(X^{2}<Y<X\right)=\int_{0}^{1} \int_{x^{2}}^{x} 2 x d y d x=\frac{1}{6}$
4. (\#5.5) Prove that if the jointly CDF of X and Y satisfies $F_{X Y}(x, y)=F_{X}(x) F_{Y}(y)$, that is, if X and Y are independent, then for any pair of intervals (a, b) and $(c, d), P(a \leq X \leq b, c \leq$ $Y \leq d)=P(a \leq X \leq b) P(c \leq Y \leq d)$.

Solution:

Let $a_{-1}=a$ when X is continuous and and $a_{-1}=\operatorname{argmax}_{x \in \Omega_{X} a n d x<a}(x-a)$ when X is discrete. Define $c_{-1}=c$ when Y is continuous and and $c_{-1}=\operatorname{argmax}_{y \in \Omega_{Y} a n d y<c}(y-c)$ when Y is discrete.

$$
\begin{aligned}
P(a \leq & X \leq b, c \leq Y \leq d)=P(X \leq b, c \leq Y \leq d)-P\left(X \leq a_{-1}, c \leq Y \leq d\right) \\
= & P(X \leq b, Y \leq d)-P\left(X \leq b, Y \leq c_{-1}\right)-P\left(X \leq a_{-1}, Y \leq d\right) \\
& +P\left(X \leq a_{-1}, Y \leq c_{-1}\right) \\
= & F(b, d)-F\left(b, c_{-1}\right)-F\left(a_{-1}, d\right)+F\left(a_{-1}, c_{-1}\right) \\
= & F_{X}(b) F_{Y}(d)-F_{X}(b) F_{Y}\left(c_{-1}\right)-F_{X}\left(a_{-1}\right) F_{Y}(d) \\
& +F_{X}\left(a_{-1}\right) F_{Y}\left(c_{-1}\right) \\
= & P(X \leq b)\left[P(Y \leq d)-P\left(Y \leq c_{-1}\right)\right]-P\left(X \leq a_{-1}\right)\left[P(Y \leq d)-P\left(Y \leq c_{-1}\right)\right] \\
= & P(X \leq b) P(c \leq Y \leq d)-P\left(X \leq a_{-1}\right) P(c \leq Y \leq d) \\
= & P(a \leq X \leq b) P(c \leq Y \leq d)
\end{aligned}
$$

5. (\#5.9) Suppose $g(x) \geq 0$ and $\int_{0}^{\infty} g(x) d x=1$, show that $f(x, y)=\frac{2 g\left(\sqrt{x^{2}+y^{2}}\right)}{\pi \sqrt{x^{2}+y^{2}}}$, for $x, y>0$, is a joint PDF.

Solution:

(i) It is trivial that $f(x, y) \geq 0$. (ii) Substituting x and y with $r \cos \theta$ and $r \sin \theta$ respectively, we obtain

$$
\int_{0}^{\infty} \int_{0}^{\infty} f(x, y) d x d y=\int_{0}^{\pi / 2} \int_{0}^{\infty} \frac{2 g(r)}{\pi r} r d r d \theta=\frac{2}{\pi} \int_{0}^{\pi / 2} \int_{0}^{\infty} g(r) d r d \theta=\frac{2}{\pi} \int_{0}^{\pi / 2} 1 d \theta=1
$$

6. Suppose a joint PDF is

$$
f_{X Y}(x, y)= \begin{cases}k x, & 0<x<1,0<y<1-x \\ 0, & \text { otherwise }\end{cases}
$$

Find (a) the value of k; (b) the marginal $\operatorname{PDF} f_{X}(x) ;(\mathrm{c})$ the marginal $\operatorname{PDF} f_{Y}(y)$; (d) the conditional PDF of Y given $X=x$; (e)the conditional PDF of X given $Y=y$; (f)check if X and Y are independent.

Solution:

(a) $\int_{0}^{1} \int_{0}^{1-x} k x d y d x=\frac{k}{6}=1$, therefore $k=6$.
(b) $f_{X}(x)=\left\{\begin{array}{lc}\int_{0}^{1-x} 6 x d y=6 x-6 x^{2}, & 0<x<1 \\ 0, & \text { otherwise }\end{array}\right.$
(c) $f_{Y}(y)=\left\{\begin{array}{lc}\int_{0}^{1-y} 6 x d x=3(1-y)^{2}, & 0<y<1 \\ 0, & \text { otherwise }\end{array}\right.$
(d) $f_{Y \mid X}(y \mid x)=\frac{f_{X, Y}(x, y)}{f_{Y}(y)}=\left\{\begin{array}{lr}\frac{1}{1-x}, 0<y<1-x, & 0<x<1 \\ 0, & \text { otherwise }\end{array}\right.$
(e) $f_{X \mid Y}(x \mid y)=\frac{f_{X, Y}(x, y)}{f_{X}(x)}= \begin{cases}\frac{2 x}{(1-y)^{2}}, & 0<y<1-x, 0<x<1 \\ 0, & \text { otherwise }\end{cases}$
(f) X and Y are not independent.
7.(\#5.10) Suppose (X, Y) has a joint PDF

$$
f_{X Y}(x, y)=k e^{-y} \text { for } 0<x<y<\infty
$$

Find (a) the value of k; (b) the marginal $\operatorname{PDF} f_{X}(x) ;(c)$ the marginal $\operatorname{PDF} f_{Y}(y)$; (d) the conditional PDF of Y given $X=x$; (e)the conditional PDF of X given $Y=y$.

Solution:

(a) $\int_{0}^{\infty} \int_{0}^{y} k e^{-y} d x d y=\int_{0}^{\infty} k y e^{-y} d y=k=1$, therefore $k=1$.
(b) $f_{X}(x)= \begin{cases}\int_{x}^{\infty} e^{-y} d y=e^{-x}, & x>0 \\ 0, & \text { otherwise }\end{cases}$
(c) $f_{Y}(y)= \begin{cases}\int_{0}^{y} e^{-y} d x=y e^{-y}, & y>0 \\ 0, & \text { otherwise }\end{cases}$
(d) $f_{Y \mid X}(y \mid x)=\frac{f_{X, Y}(x, y)}{f_{Y}(y)}= \begin{cases}e^{x-y}, & 0<x<y<\infty \\ 0, & \text { otherwise }\end{cases}$
(e) $f_{X \mid Y}(x \mid y)=\frac{f_{X, Y}(x, y)}{f_{X}(x)}=\left\{\begin{array}{cc}\frac{1}{y}, & 0<x<y<\infty \\ 0, & \text { otherwise }\end{array}\right.$
8.(\#5.11) (X, Y) follows a bivariate normal distribution if their joint PDF

$$
f_{X Y}(x, y)=\frac{1}{2 \pi \sigma_{1} \sigma_{2} \sqrt{1-\rho^{2}}} e^{-\frac{1}{2\left(1-\rho^{2}\right)}\left[\left(\frac{x-\mu_{1}}{\sigma_{1}}\right)^{2}-2 \rho\left(\frac{x-\mu_{1}}{\sigma_{1}}\right)\left(\frac{y-\mu_{2}}{\sigma_{2}}\right)+\left(\frac{y-\mu_{2}}{\sigma_{2}}\right)^{2}\right]},
$$

where $-\infty<\mu_{1}, \mu_{2}<\infty, 0<\sigma_{1}, \sigma_{2}<\infty,-1 \leq \rho \leq 1$. Find
(a) $f_{X}(x)$; (b) $f_{Y}(y) ;(\mathrm{c}) f_{Y \mid X}(y \mid x)$; (d) $f_{X \mid Y}(x \mid y)$; (e) Under what conditions on parameters $\left(\mu_{1}, \mu_{2}, \sigma_{1}^{2}, \sigma_{2}^{2}, \rho\right)$, X and Y will be independent. [Hint: When finding $f_{X}(x)$, you can form a term with form

$$
z^{2}=\left[\left(\frac{y-\mu_{2}}{\sigma_{2}}\right)-\rho\left(\frac{x-\mu_{1}}{\sigma_{1}}\right)\right]^{2}
$$

and integrate it out first.]

Solution: [See Chapter 5 section 5.6 pages 149-151.]
9.(\#5.6) The random pair (X, Y) has the joint distribution

			3	
		1	2	3
	2	$\frac{1}{12}$	$\frac{1}{6}$	$\frac{1}{12}$
Y	3	$\frac{1}{6}$	0	$\frac{1}{6}$
	4	0	$\frac{1}{3}$	0

(a) Show that X and Y are dependent;
(b) Give a probability table for random variables U and V that have the same marginals as X and Y but are independent.

Solution:

(a) To show X and Y are dependent, we can first calculate the marginal pmfs, by summing corresponding rows or columns. We have

$$
f_{X}(x)=\left\{\begin{array}{ll}
\frac{1}{4}, & x=1 \\
\frac{1}{2}, & x=2 \\
\frac{1}{4}, & x=3 \\
0, & \text { otherwise }
\end{array} \text { and } \quad f_{Y}(y)= \begin{cases}\frac{1}{3}, & x=2 \\
\frac{1}{3}, & x=3 \\
\frac{1}{3}, & x=4 \\
0, & \text { otherwise }\end{cases}\right.
$$

It is easy to see that $f_{X Y}(x, y) \neq f_{X}(x) f_{Y}(y)$. Thus X and Y are not independent of each other.
(b) The probability table for random variable U and V independent is:

		U		
		1	2	3
V	2	$\frac{1}{12}$	$\frac{1}{6}$	$\frac{1}{12}$
	3	$\frac{1}{12}$	$\frac{1}{6}$	$\frac{1}{12}$
	4	$\frac{1}{12}$	$\frac{1}{6}$	$\frac{1}{12}$

10.(\#5.7) Suppose X and Y are independent $N(0,1)$ random variables.
(a) Find $P\left(X^{2}+Y^{2}<1\right)$;
(b) Find $P\left(X^{2}<1\right)$, after verifying that X^{2} is distributed χ_{1}^{2}.

Solution:

(a) By Example 5.21 of the textbook, we know the distribution of $U=X^{2}+Y^{2}$ is $f_{U}(u)=$ $\frac{1}{2} e^{-\frac{u}{2}}$ when $u>0$ and 0 otherwise. So $P(U<1)=\int_{0}^{1} \frac{1}{2} e^{-\frac{u}{2}} d u=1-e^{-1 / 2}$.
(b) Using the transformation result, easy to see it follows the pdf of χ_{1}^{2}. Then $P\left(X^{2}<1\right)=$ $\frac{1}{\pi}(1-1 / e) \ln (\sqrt{2}+1)$.
11. (\#5.8) Let X be an exponential(1) random variable, and define Y to be the integer part of $X+1$, that is $Y=i+1$ if and only if $i \leq X<i+1, i=0,1,2, \ldots$
(a) Find the distribution of Y. What well-known distribution does Y have?
(b) Find the conditional distribution of $X-4$ given $Y \geq 5$.

Solution:

(a) Since Y is a discrete random variable, to find the distribution of Y, we just need to find the probability weighting in terms of X for Y taking value y. When $Y=y, X$ takes value from $y-1$ to y. Thus $P(Y=y)=P(1-y \leq X \leq y)=\int_{y-1}^{y} e^{-x} d x=-\left.e^{-x}\right|_{y-1} ^{y}=$ $e^{-(y-1)}-e^{-y}=(e-1) e^{-y}=\left(1-\frac{1}{e}\right) e^{1-y}=\left(1-\frac{1}{e}\right)\left(\frac{1}{e}\right)^{y-1}$, for $y=1,2,3, \ldots$, and 0 elsewhere.

Thus Y follows Geometric distribution with $p=1-\frac{1}{e}$.
(b) $Y \geq 5 \Longleftrightarrow X \geq 4$. The conditional distribution of $X-4$ given $Y \geq 5$ is the same with conditional distribution of $X-4$ given $X \geq 4$. Define $Z=X-4$, then we try to find $F_{Z \mid X \geq 4}(z \mid x \geq 4)$.
By definition,

$$
\begin{aligned}
F_{Z \mid X \geq 4}(z \mid x \geq 4) & =P(Z \leq z \mid X \geq 4) \\
& =P(X-4 \leq z \mid X \geq 4) \\
& =\frac{P(X \leq z+4, X \geq 4)}{P(X \geq 4)} \\
& =\frac{P(4 \leq X \leq z+4)}{1-P(X \leq 4)} \\
& =\frac{P(X \leq z+4)-P(X \leq 4)}{1-P(X \leq 4)} \\
& =\frac{1-e^{-(z+4)}-\left(1-e^{-4}\right)}{1-\left(1-e^{-4}\right)} \\
& =\frac{e^{-4}-e^{-(z+4)}}{e^{-4}} \\
& =1-e^{-z}
\end{aligned}
$$

We can see that the new random variable $Z=X-4$ conditioning on $X \geq 4$ has an exponential distribution with rate parameter to be 1 . Thus, the conditional distribution of $X-4$ given $X \geq 4$ has identical distribution to X. We call this the memoryless property of exponential distribution.
12.(\#5.13) Suppose the random variables X and Y have the following joint pdf

$$
f_{X Y}(x, y)= \begin{cases}8 x y & \text { for } 0 \leq x \leq y \leq 1 \\ 0 & \text { otherwise }\end{cases}
$$

Also, let $U=X / Y$ and $V=Y$. Determine the joint pdf of U and V.

Solution:

First notice the support is $\Omega_{U, V}=\left\{(u, v) \in R^{2}, 0 \leq u \leq 1,0 \leq v \leq 1\right\}$. And Jacobian $J_{X Y}(u, v)=v$. Therefore the joint distribution of $f_{U V}(u, v)=8 u v^{3}$ on $\Omega_{U, V}$ and 0 elsewhere.
13. (\#5.14) (1) Let X_{1} and X_{2} be independent $N(0,1)$ random variables. Find the PDF of $\left(X_{1}-X_{2}\right)^{2} / 2$. (2) If $X_{i}, i=1,2$, are independent $\operatorname{Gamma}\left(\alpha_{i}, 1\right)$ random variables, find the
marginal distributions of $X_{1} /\left(X_{1}+X_{2}\right)$ and $X_{2} /\left(X_{1}+X_{2}\right)$.

Solution:

(a) - To solve this question, it is crucial to define the "right" U and V. If we define U to be $\frac{\left(X_{1}-X_{2}\right)^{2}}{2}$, then we run into a problem, since no matter how we define V, the mapping is not one-to-one. Thus, let's first focus on the distribution of $\frac{X_{1}-X_{2}}{\sqrt{2}}$. The intuition is that X_{1} and X_{2} are both standard normal random variable and they are independent of each other. Then $X_{1}-X_{2}$ will also be a normal random variable with variance to be 2. Then $\frac{X_{1}-X_{2}}{\sqrt{2}}$ should be a standard normal random variable and its square should be a chi-square random variable with degree of freedom 1 . With this reasoning, we first construct a bivariate transformation as following:

$$
\begin{aligned}
U & =\frac{X_{1}+X_{2}}{\sqrt{2}} \\
V & =\frac{X_{1}-X_{2}}{\sqrt{2}}
\end{aligned}
$$

- The support of (U, V) is $\Omega_{U, V}=\left\{(u, v) \in R^{2},-\infty<u<\infty,-\infty<v<\infty\right\}$.
- Jacobian $J_{X Y}(u, v)$ is computed as following:

$$
J_{X, Y}(u, v)=\left|\begin{array}{cc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}}
\end{array}\right|=1
$$

- Apply the Bivariate Transformation Theorem, we have the joint distribution of (u,v) is:

$$
\begin{aligned}
f_{U, V}(u, v) & =f_{X, Y}(x, y) \frac{1}{\left|J_{U, V}(x, y)\right|} \\
& =\frac{1}{2 \pi \sigma^{2}} \exp \left(-\frac{1}{2 \sigma^{2}}\left(x^{2}+y^{2}\right)\right) \\
& =\frac{1}{2 \pi \sigma^{2}} \exp \left(-\frac{1}{2 \sigma^{2}}\left(\frac{(u+v)^{2}}{2}+\frac{(u-v)^{2}}{2}\right)\right) \\
& =\frac{1}{2 \pi \sigma^{2}} \exp \left(-\frac{u^{2}}{2 \sigma^{2}}-\frac{v^{2}}{2 \sigma^{2}}\right) \\
& =\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-\frac{u^{2}}{2 \sigma^{2}}\right) \frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-\frac{v^{2}}{2 \sigma^{2}}\right) \\
& =f_{U}(u) f_{V}(v)
\end{aligned}
$$

It follows that $U \sim N(0,1)$ and $V \sim N(0,1)$. Random variables U and V are independent. $\frac{\left(X_{1}-X_{2}\right)^{2}}{2}=V^{2} \sim \chi^{2}(1)$.
(b) \quad From $U=\frac{X_{1}}{X_{1}+X_{2}}$ and $V=X_{1}+X_{2}$, we have $X_{1}=U V$ and $X_{2}=(1-U) V$.

- The support of (U, V) is $\Omega_{U, V}=\{0<u<1$, and $0<v<\infty\}$.
- The Jacobian $J_{X_{1}, X_{2}}(u, v)$ is:

$$
J_{X_{1}, X_{2}}(u, v)=\left|\begin{array}{cc}
v & u \\
-v & (1-u)
\end{array}\right|=v .
$$

- Applying the Bivariate Transformation Theorem,

$$
\begin{aligned}
f_{U, V}(u, v) & =f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right)\left|J_{X_{1}, X_{2}}(u, v)\right| \\
& =\frac{1}{\Gamma\left(\alpha_{1}\right)} x_{1}^{\alpha_{1}-1} e^{-x_{1}} \frac{1}{\Gamma\left(\alpha_{2}\right)} x_{2}^{\alpha_{2}-1} e^{-x_{2}} v \\
& =\frac{1}{\Gamma\left(\alpha_{1}\right)}(u v)^{\alpha_{1}-1} e^{-u v} \frac{1}{\Gamma\left(\alpha_{2}\right)}(1-u)^{\alpha_{2}-1} v^{\alpha_{2}-1} e^{-(1-u) v} v \\
& =\left[\frac{\Gamma\left(\alpha_{1}+\alpha_{2}\right)}{\Gamma\left(\alpha_{1}\right) \Gamma\left(\alpha_{2}\right)} u^{\alpha_{1}-1}(1-u)^{\alpha_{2}-1}\right]\left[\frac{1}{\Gamma\left(\alpha_{1}+\alpha_{2}\right)} v^{\alpha_{1}+\alpha_{2}-1} e^{-v}\right]
\end{aligned}
$$

This implies that

$$
f_{U}(u)=\frac{\Gamma\left(\alpha_{1}+\alpha_{2}\right)}{\Gamma\left(\alpha_{1}\right) \Gamma\left(\alpha_{2}\right) u^{\alpha_{1}-1}(1-u)^{\alpha_{2}-1}}
$$

Thus, $U=\frac{X_{1}}{X_{1}+X_{2}} \sim \operatorname{beta}\left(\alpha_{1}, \alpha_{2}\right)$. Similarly, we can show that $\frac{X_{2}}{X_{1}+X_{2}} \sim \operatorname{beta}\left(\alpha_{2}, \alpha_{1}\right)$ from a bivariate transformation when we define $U=\frac{X_{2}}{X_{1}+X_{2}}$ and $V=X_{1}+X_{2}$.
14.(\#5.15) Suppose X_{1}, X_{2} are independent standard Gamma random variables, possibly with different parameters α_{1}, α_{2}. Show:
(a) The random variables

$$
X_{1}+X_{2} \text { and } \frac{X_{1}}{X_{1}+X_{2}}
$$

are mutually independent;
(b) The distribution of $X_{1}+X_{2}$ is a standard Gamma with $\alpha=\alpha_{1}+\alpha_{2}$;
(c) The distribution of $X_{1} /\left(X_{1}+X_{2}\right)$ is a standard Beta with parameters α_{1}, α_{2}.

Solution:

Similar to part(2) of Question 5.14.
15.(\#5.25) Suppose $X_{1} \sim \operatorname{Gamma}\left(\alpha_{1}, 1\right), X_{2} \sim \operatorname{Gamma}\left(\alpha_{2}, 1\right)$, and X_{1} and X_{2} are independent. Show that $X_{1}+X_{2}$ and $X_{1} /\left(X_{1}+X_{2}\right)$ are independent. Also, find the marginal distributions of $X_{1}+X_{2}$ and $X_{1} /\left(X_{1}+X_{2}\right)$, respectively.

Solution:

From problem 13's result,

$$
f_{U V}(u, v)=\left[\frac{\Gamma\left(\alpha_{1}+\alpha_{2}\right)}{\Gamma\left(\alpha_{1}\right) \Gamma\left(\alpha_{2}\right)} u^{\alpha_{1}-1}(1-u)^{\alpha_{2}-1}\right]\left[\frac{1}{\Gamma\left(\alpha_{1}+\alpha_{2}\right)} v^{\alpha_{1}+\alpha_{2}-1} e^{-v}\right]
$$

for $0<u<1$, and $0<v<\infty$.
It can be written as a produce of function of u and function of v. Thus U and V are independent. It follows that

$$
\begin{aligned}
f_{U}(u) & =\frac{\Gamma\left(\alpha_{1}+\alpha_{2}\right)}{\Gamma\left(\alpha_{1}\right) \Gamma\left(\alpha_{2}\right)} u^{\alpha_{1}-1}(1-u)^{\alpha_{2}-1} \\
f_{V}(v) & =\frac{1}{\Gamma\left(\alpha_{1}+\alpha_{2}\right)} v^{\alpha_{1}+\alpha_{2}-1} e^{-v}
\end{aligned}
$$

for $0<u<1$, and $0<v<\infty$, respectively. Thus we know $U=\frac{X_{2}}{X_{1}+X_{2}}$ and $V=X_{1}+X_{2}$ are independent of each other and $U=\frac{X_{2}}{X_{1}+X_{2}}$ follows beta $\left(\alpha_{1}, \alpha_{2}\right)$ and $V=X_{1}+X_{2}$ follows $\operatorname{Gamma}\left(\alpha_{1}+\alpha_{2}, 1\right)$.
16. $(\# 5.16) X_{1}$ and X_{2} are independent $N\left(0, \sigma^{2}\right)$ random variables.
(1) Find the joint distribution of Y_{1} and Y_{2}, where $Y_{1}=X_{1}^{2}+X_{2}^{2}$ and $Y_{2}=X_{1} / \sqrt{Y_{1}}$.
(2) Show that Y_{1} and Y_{2} are independent.

Solution:

You can read Chapter 5 Example 21 to solve this question. When you solve this one, you have to change your notation.
(a) - Find we need to find out the support for Y_{1} and Y_{2} : from $Y_{1}=X_{1}^{2}+X_{2}^{2}$, and $Y_{2}=\frac{X_{1}}{\sqrt{X_{1}^{2}+X_{2}^{2}}}$, and $X_{1} \sim N\left(0, \sigma^{2}\right), X_{2} \sim N\left(0, \sigma^{2}\right)$, we can derive the support for $\left(Y_{1}, Y_{2}\right)$ as:

$$
\Omega_{Y_{1}, Y_{2}}=\left\{\left(y_{1}, y_{2}\right) \in R^{2}: 0<y_{1}<\infty,-1<y_{2}<1\right\}
$$

- Be careful, Bivariate Transformation Theorem doesn't apply here!, since $\left(Y_{1}, Y_{2}\right)$ is not a 1-1 mapping from $\left(X_{1}, X_{2}\right)$. For the distribution of $Z=X_{2}^{2}$, we have for the CDF of $Z, \forall z \in \Omega_{Z}=\{z \in[0, \infty)\}$:

$$
\begin{aligned}
F_{Z}(z) & =P\left(X_{2}^{2} \leq z\right) \\
& =P\left(-\sqrt{z} \leq X_{2} \leq \sqrt{z}\right) \\
& =F_{X_{2}}(\sqrt{z})-F_{X_{2}}(-\sqrt{z})
\end{aligned}
$$

The pdf of Z is:

$$
\begin{aligned}
f_{Z}(z) & =\frac{d F_{Z}(z)}{d z} \\
& =f_{X_{2}}(\sqrt{z}) \frac{1}{2 \sqrt{z}}+f_{X_{2}}(-\sqrt{z}) \frac{1}{2 \sqrt{z}} \\
& =\frac{1}{\sqrt{2 \pi z \sigma^{2}}} e^{-\frac{z}{2 \sigma^{2}}}, \text { for } z \in[0, \infty)
\end{aligned}
$$

and 0 , elsewhere.

- X_{1} is independent of X_{2}, then X_{2} is also independent of $Z \equiv X_{2}^{2}$. The joint pdf of $\left(X_{1}, Z\right)$ is:

$$
f_{X_{1}, Z}\left(x_{1}, z\right)=\frac{1}{2 \pi \sigma^{2} \sqrt{z}} e^{-x^{2} / 2 \sigma^{2}} e^{-z / 2 \sigma^{2}}
$$

The support of $\left(X_{1}, Z\right)$ is $\Omega_{X_{1}, Z}=\left\{\left(x_{1}, z\right) \in R^{2},-\infty<x_{1}<-\infty, 0 \leq z<\infty\right\}$. After substituting X_{2}^{2} by Z, we can do the following transformation:

$$
\begin{aligned}
& Y_{1}=X_{1}^{2}+Z \\
& Y_{2}=\frac{X_{1}}{\sqrt{X_{1}^{2}+Z}}
\end{aligned}
$$

then,

$$
\begin{aligned}
X_{1} & =\sqrt{Y_{1}} Y_{2} \\
Z & =Y_{1}\left(1-Y_{2}^{2}\right)
\end{aligned}
$$

- The Jacobian $J_{X_{1}, Z}\left(y_{1}, y_{2}\right)$ is:

$$
J_{X_{1}, Z}\left(y_{1}, y_{2}\right)=\left|\begin{array}{cc}
\frac{y_{2}}{2 \sqrt{y_{1}}} & \sqrt{y_{1}} \\
1-y_{2}^{2} & -2 y_{1} y_{2}
\end{array}\right|=-\sqrt{y_{1}} .
$$

- Using Bivariate Transformation Theorem, we have:

$$
\begin{aligned}
f_{Y_{1}, Y_{2}}\left(y_{1}, y_{2}\right) & =f_{X_{1}, Z}\left(x_{1}, z\right)\left|J_{X_{1}, Z}\left(y_{1}, y_{2}\right)\right| \\
& =\frac{1}{2 \pi \sigma^{2} \sqrt{1-y_{2}^{2}}} e^{-\frac{y_{1}}{2 \sigma^{2}}}, \quad \text { for }\left(y_{1}, y_{2}\right) \in \Omega_{Y_{1} Y_{2}}
\end{aligned}
$$

and 0 otherwise.
(b) Y_{1} and Y_{2} are independent, because, the joint distribution equals the product of the marginal distribution for all $\left(y_{1}, y_{2}\right) \in \Omega_{Y_{1} Y_{2}}$. First calculate the marginal pdf of Y_{1} :

$$
\begin{aligned}
f_{Y_{1}}\left(y_{1}\right) & =\int_{-1}^{1} \frac{1}{2 \pi \sigma^{2} \sqrt{1-y_{2}^{2}}} e^{-\frac{y_{1}}{2 \sigma^{2}}} d y_{2} \\
& =\frac{1}{2 \sigma^{2}} e^{-\frac{y_{1}}{2 \sigma^{2}}} \int_{-1}^{1} \frac{1}{\pi \sqrt{1-y_{2}^{2}}} d y_{2} \\
& =\frac{1}{2 \sigma^{2}} e^{-\frac{y_{1}}{2 \sigma^{2}}} \int_{\pi}^{0} \frac{1}{\pi \sqrt{1-\cos (\theta)^{2}}} d \cos (\theta) \\
& =\frac{1}{2 \sigma^{2}} e^{-\frac{y_{1}}{2 \sigma^{2}}} \int_{\pi}^{0} \frac{1}{\pi \sin (\theta)}(-\sin (\theta)) d \theta \\
& =\left.\frac{1}{2 \sigma^{2}} e^{-\frac{y_{1}}{2 \sigma^{2}}}\left(-\frac{1}{\pi}\right) \theta\right|_{\pi} ^{0} \\
& =\frac{1}{2 \sigma^{2}} e^{-\frac{y_{1}}{2 \sigma^{2}}}, \text { for } y_{1} \in(0, \infty),
\end{aligned}
$$

and 0 , elsewhere. Actually, we can see that Y_{1} follows Exponential $\left(\frac{1}{2 \sigma^{2}}\right)$. By the same logic, we can show that

$$
f_{Y_{2}}\left(y_{2}\right)=\frac{1}{\pi \sqrt{1-y_{2}^{2}}}, \text { for } y_{2} \in(-1,1)
$$

and 0 , elsewhere. Then we can prove Y_{1} and Y_{2} are independent of each other since

$$
f_{Y_{1} Y_{2}}\left(y_{1}, y_{2}\right)=f_{Y_{1}}\left(y_{1}\right) f_{Y_{2}}\left(y_{2}\right)
$$

You can also prove independence by factorization theorem like the lecture note does, however, you have to show that the result holds for all (y_{1}, y_{2}) pair in the R^{2} space.
17. $(\# 5.17)$ For $X \sim \operatorname{Beta}(\alpha, \beta)$, and $Y \sim \operatorname{Beta}(\alpha+\beta, \gamma)$ be independent random variables, find the distribution of $X Y$ by making the transformation given in (1) and (2) and integrating out V.
(a) $U=X Y, V=Y$.
(b) $U=X Y, V=X / Y$.

Solution:

(a) From $U=X Y$ and $V=Y$, we have $X=\frac{U}{V}$ and $Y=V$. We can first find the support is $0<u<v<1$.
The determinant of Jacobian matrix is:

$$
\left|\operatorname{det} J_{X Y}(u, v)\right|=\left|\operatorname{det}\left[\begin{array}{cc}
\frac{1}{v} & -\frac{u}{v^{2}} \\
0 & 1
\end{array}\right]\right|=\frac{1}{v}
$$

It follows that

$$
\begin{aligned}
f_{U V}(u, v) & =f_{X Y}(x, y)\left|J_{X Y}(u, v)\right|=f_{X Y}(x, y) \frac{1}{v} \\
& =\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha) \Gamma(\beta)} x^{\alpha-1}(1-x)^{\beta-1} \frac{\Gamma(\alpha+\beta+\gamma)}{\Gamma(\alpha+\beta) \Gamma(\gamma)} y^{\alpha+\beta-1}(1-y)^{\gamma-1} \frac{1}{v} \\
& =\frac{\Gamma(\alpha+\beta+\gamma)}{\Gamma(\alpha) \Gamma(\beta) \Gamma(\gamma)}\left(\frac{u}{v}\right)^{\alpha-1}\left(1-\frac{u}{v}\right)^{\beta-1} v^{\alpha+\beta-1}(1-v)^{\gamma-1} \frac{1}{v}, 0<u<v<1
\end{aligned}
$$

Then,

$$
\begin{aligned}
f_{U}(u) & =\int_{u}^{1} f_{U V}(u, v) d v \\
& =\frac{\Gamma(\alpha+\beta+\gamma)}{\Gamma(\alpha) \Gamma(\beta) \Gamma(\gamma)} u^{\alpha-1} \int_{u}^{1} v^{\beta-1}\left(\frac{v-u}{v}\right)^{\beta-1}(1-v)^{\gamma-1} d v
\end{aligned}
$$

Let $z=\frac{v-u}{1-u}$, we have $d z=\frac{d v}{1-u}, 1-v=(1-y)(1-u)$ and $\frac{v-u}{v}=\frac{z(1-u)}{v}$. Thus

$$
\begin{aligned}
f_{U}(u) & =\frac{\Gamma(\alpha+\beta+\gamma)}{\Gamma(\alpha) \Gamma(\beta) \Gamma(\gamma)} u^{\alpha-1} \int_{0}^{1} v^{\beta-1}(1-z)^{\gamma-1}(1-u)^{\gamma-1} \frac{z^{\beta-1}(1-u)^{\beta-1}}{v^{\beta-1}}(1-u) d z \\
& =\frac{\Gamma(\alpha+\beta+\gamma)}{\Gamma(\alpha) \Gamma(\beta) \Gamma(\gamma)} u^{\alpha-1}(1-u)^{\beta+\gamma-1} \int_{0}^{1}(1-z)^{\gamma-1} z^{\beta-1} d z \\
& =\frac{\Gamma(\alpha+\beta+\gamma)}{\Gamma(\alpha) \Gamma(\beta) \Gamma(\gamma)} u^{\alpha-1}(1-u)^{\beta+\gamma-1} \frac{\Gamma(\beta) \Gamma(\gamma)}{\Gamma(\beta+\gamma)} \\
& =\frac{\Gamma(\alpha+\beta+\gamma)}{\Gamma(\alpha) \Gamma(\beta+\gamma)} u^{\alpha-1}(1-u)^{\beta+\gamma-1}, \quad 0<u<1
\end{aligned}
$$

Thus, $U \sim \operatorname{beta}(\alpha, \beta+\gamma)$.
(b) From $U=X Y$ and $V=X / Y$, we have $X=\sqrt{U V}$ and $Y=\sqrt{\frac{U}{V}}$. The support of (U, V) is $0<u<v<1 / u$ and $0<u<1$.
The determinant of Jacobian matrix is:

$$
\left|\operatorname{det} J_{X Y}(u, v)\right|=\left|\operatorname{det}\left[\begin{array}{cc}
\frac{1}{2} \sqrt{\frac{v}{u}} & \frac{1}{2} \sqrt{\frac{u}{v}} \\
\frac{1}{2} \sqrt{\frac{1}{u v}} & -\frac{1}{2} \sqrt{\frac{u}{v^{3}}}
\end{array}\right]\right|=\frac{1}{2 v}
$$

It follows that

$$
\begin{aligned}
f_{U V}(u, v) & =f_{X Y}(x, y)\left|J_{X Y}(u, v)\right|=f_{X Y}(x, y) \frac{1}{2 v} \\
& =\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha) \Gamma(\beta)} x^{\alpha-1}(1-x)^{\beta-1} \frac{\Gamma(\alpha+\beta+\gamma)}{\Gamma(\alpha+\beta) \Gamma(\gamma)} y^{\alpha+\beta-1}(1-y)^{\gamma-1} \frac{1}{2 v} \\
& =\frac{\Gamma(\alpha+\beta+\gamma)}{\Gamma(\alpha) \Gamma(\beta) \Gamma(\gamma)} \sqrt[v^{u v}]{ }{ }^{\alpha-1}(1-\sqrt{u v})^{\beta-1} \sqrt[{\sqrt{u}_{v}^{v}}]{ } \quad\left(1-\sqrt{\frac{u}{v}}\right)^{\gamma-1} \frac{1}{2 v}
\end{aligned}
$$

The set $\{0<x<1,0<y<1\}$ is mapped onto the set $\left\{0<u<v<\frac{1}{u}, 0<u<1\right\}$. Then,

$$
\begin{aligned}
f_{U}(u)= & \int_{u}^{1 / u} f_{U V}(u, v) d v \\
= & \frac{\Gamma(\alpha+\beta+\gamma)}{\Gamma(\alpha) \Gamma(\beta) \Gamma(\gamma)} u^{\alpha-1}(1-u)^{\beta+\gamma-1} \int_{u}^{1 / u}\left(\frac{1-\sqrt{u v}}{1-u}\right)^{\beta-1}\left(\frac{1-\sqrt{\frac{u}{v}}}{1-u}\right)^{\gamma-1} \\
& \times \frac{\sqrt{\frac{u}{v}} \beta}{2 v(1-u)} d v \\
= & \frac{\Gamma(\alpha+\beta+\gamma)}{\Gamma(\alpha) \Gamma(\beta) \Gamma(\gamma)} u^{\alpha-1}(1-u)^{\beta+\gamma-1} \int_{u}^{1 / u}\left(\frac{\sqrt{\frac{u}{v}}-u}{1-u}\right)^{\beta-1}\left(1-\frac{\sqrt{\frac{u}{v}}-u}{1-u}\right)^{\gamma-1} \\
& \times \frac{\sqrt{\frac{u}{v}}}{2 v(1-u)} d v
\end{aligned}
$$

Let $z=\frac{\sqrt{\frac{u}{v}}-u}{1-u}$, we have $d z=-\frac{\sqrt{\frac{u}{v}}}{2(1-u) v} d v$. Thus

$$
\begin{aligned}
f_{U}(u) & =\frac{\Gamma(\alpha+\beta+\gamma)}{\Gamma(\alpha) \Gamma(\beta) \Gamma(\gamma)} u^{\alpha-1}(1-u)^{\beta+\gamma-1} \int_{0}^{1} z^{\beta-1}(1-z)^{\gamma-1} d z \\
& =\frac{\Gamma(\alpha+\beta+\gamma)}{\Gamma(\alpha) \Gamma(\beta) \Gamma(\gamma)} u^{\alpha-1}(1-u)^{\beta+\gamma-1} \frac{\Gamma(\alpha) \Gamma(\beta)}{\Gamma(\alpha+\beta)} \\
& =\frac{\Gamma(\alpha+\beta+\gamma)}{\Gamma(\alpha) \Gamma(\beta+\gamma)} u^{\alpha-1}(1-u)^{\beta+\gamma-1}, \quad 0<u<1
\end{aligned}
$$

Thus, $U \sim \operatorname{beta}(\alpha, \beta+\gamma)$.
18. $(\# 5.18)$ Let $X \sim N\left(\mu, \sigma^{2}\right)$, and let $Y \sim N\left(\gamma, \sigma^{2}\right)$. Suppose X and Y are independent. Define $U=X+Y$ and $V=X-Y$. Show that U and V are independent normal random variables. Find the distribution of each of them.

Solution:

Let $Z=Y+(\mu-\gamma)$. Then X and Z are independent and $Z \sim N\left(\mu, \sigma^{2}\right)$. From the result of Chapter 5 example 22, $X+Z \sim N\left(2 \mu, 2 \sigma^{2}\right), X-Z \sim N\left(0,2 \sigma^{2}\right)$, and $X+Z, X-Z$ are independent. It implies that $U=X+Z-(\mu-\gamma) \sim N\left(\mu+\gamma, 2 \sigma^{2}\right), V=X-Z+(\mu-\gamma) \sim$ $N\left(\mu-\gamma, 2 \sigma^{2}\right)$ are also independent, since adding constant does not change independence.
19.(\#5.20) Suppose $X_{1} \sim N(0,1), X_{2} \sim N(0,1)$ and X_{1} and X_{2} are independent. Find the distribution of X_{1} / X_{2}.

Solution:

From $U=X_{1} / X_{2}$ and $V=X_{2}$, we have $X_{1}=U V$ and $X_{2}=V$. The support for (U, V) is $-\infty<u<\infty$ and $-\infty<v<\infty$. The determinant of Jacobian matrix is:

$$
\left|\operatorname{det} J_{X_{1} X_{2}}(u, v)\right|=\left|\operatorname{det}\left[\begin{array}{ll}
v & u \\
0 & 1
\end{array}\right]\right|=|v|
$$

It follows that

$$
\begin{aligned}
f_{U V}(u, v) & =f_{X_{1} X_{2}}\left(x_{1}, x_{2}\right)\left|J_{X_{1} X_{2}}(u, v)\right|=f_{X_{1} X_{2}}\left(x_{1}, x_{2}\right)|v| \\
& =\frac{1}{\sqrt{2 \pi}} e^{-x_{1}^{2} / 2} \frac{1}{\sqrt{2 \pi}} e^{-x_{2}^{2} / 2}|v| \\
& =\frac{|v|}{2 \pi} e^{-\left(u^{2}+1\right) v^{2} / 2}
\end{aligned}
$$

Then,

$$
\begin{aligned}
f_{U}(u) & =\int_{-\infty}^{\infty} f_{U V}(u, v) d v \\
& =\int_{-\infty}^{\infty} \frac{|v|}{2 \pi} e^{-\left(u^{2}+1\right) v^{2} / 2} d v \\
& =\int_{-\infty}^{0} \frac{-v}{2 \pi} e^{-\left(u^{2}+1\right) v^{2} / 2} d v+\int_{0}^{\infty} \frac{v}{2 \pi} e^{-\left(u^{2}+1\right) v^{2} / 2} d v \\
& =2 \int_{0}^{\infty} \frac{v}{2 \pi} e^{-\left(u^{2}+1\right) v^{2} / 2} d v \\
& =\frac{1}{\pi} \int_{0}^{\infty} v e^{-\left(u^{2}+1\right) v^{2} / 2} d v
\end{aligned}
$$

let $z=\left(u^{2}+1\right) v^{2} / 2$, then we have $\frac{d z}{d v}=v\left(u^{2}+1\right)$, thus we have $d v=\frac{d z}{v\left(u^{2}+1\right)}$. Also, we have $e^{-\left(u^{2}+1\right) v^{2} / 2}=e^{-z}$. Substituting them back to $f_{U}(u)$, we have

$$
\begin{aligned}
f_{U}(u) & =\frac{1}{\pi} \int_{0}^{\infty} v e^{-z} \frac{d z}{v\left(u^{2}+1\right)} \\
& =\frac{1}{\pi\left(u^{2}+1\right)} \int_{0}^{\infty} e^{-z} d z \\
& =\frac{1}{\pi\left(u^{2}+1\right)}\left[-\left.e^{z}\right|_{0} ^{\infty}\right] \\
& =\frac{1}{\pi\left(u^{2}+1\right)} \text { for } u \in(-\infty, \infty)
\end{aligned}
$$

Thus, $U \sim \operatorname{Cauchy}(0,1)$.
20.(\#5.21) Let Z_{1}, Z_{2} be independent standard normal random variables. Define

$$
\begin{aligned}
X & =\mu_{1}+a Z_{1}+b Z_{2}, \\
Y & =\mu_{2}+c Z_{1}+d Z_{2},
\end{aligned}
$$

where constants a, b, c, d satisfy the restrictions that

$$
\begin{aligned}
a^{2}+b^{2} & =\sigma_{1}^{2}, \\
c^{2}+d^{2} & =\sigma_{2}^{2}, \\
a c+b d & =\rho \sigma_{1} \sigma_{2} .
\end{aligned}
$$

Show that $(X, Y) \sim B N\left(\mu_{1}, \mu_{2}, \sigma_{1}^{2}, \sigma_{2}^{2}, \rho\right)$.

Solution:

Representing Z_{1} and Z_{2} using X and Y :

$$
\begin{aligned}
Z_{1} & =\frac{d \mu_{1}-b \mu_{2}+b Y-d X}{b c-a d} \\
Z_{2} & =\frac{a \mu_{2}-c \mu_{1}+c X-a Y}{b c-a d}
\end{aligned}
$$

Therefore $\left|\operatorname{det} J_{Z_{1} Z_{2}}(x, y)\right|=\frac{|a d-b c|}{(b c-a d)^{2}}=\frac{1}{|b c-a d|}=\frac{1}{\sigma_{1} \sigma_{2} \sqrt{1-\rho^{2}}}$

$$
\begin{aligned}
f_{X Y}(x, y) & =f_{Z_{1} Z_{2}}\left(z_{1}, z_{2}\right)\left|\operatorname{det} J_{Z_{1} Z_{2}}(x, y)\right| \\
& =\frac{1}{\sqrt{2 \pi}} e^{-\frac{z_{1}^{2}}{2}} \frac{1}{\sqrt{2 \pi}} e^{-\frac{z_{2}^{2}}{2}} \frac{1}{|b c-a d|} \\
& =\frac{1}{2 \pi \sigma_{1} \sigma_{2} \sqrt{1-\rho^{2}}} e^{-\frac{1}{2} \frac{\left.\left(d \mu_{1}-b \mu_{2}\right)^{2}+b^{2} Y^{2}+d^{2} X^{2}-b d X Y+\left(a \mu_{2}-c \mu_{1}\right)^{2}+c X^{2}+a Y^{2}-a c\right)}{(b c-a d)^{2}}} \\
& =\frac{1}{2 \pi \sigma_{1} \sigma_{2} \sqrt{1-\rho^{2}}} e^{-\frac{1}{2\left(1-\rho^{2}\right)}\left[\left(\frac{x-\mu_{1}}{\sigma_{1}}\right)^{2}+\left(\frac{y-\mu_{2}}{\sigma_{2}}\right)^{2}-2 \rho\left(\frac{x-\mu_{1}}{\sigma_{1}}\right)\left(\frac{y-\mu_{2}}{\sigma_{2}}\right)\right]}
\end{aligned}
$$

21. (\#5.22) Let X and Y be two independent uniform random variables on $[0,1]$. Show that the random variables $U=\cos (2 \pi X) \sqrt{-2 \ln Y}$ and $V=\sin (2 \pi X) \sqrt{-2 \ln Y}$ are independent standard normal random variables.

Solution:

This is the so called Box-Muller Transformation. Expressing X and Y in terms of U and V :

$$
\begin{aligned}
X & =\frac{1}{2 \pi} \tan ^{-1}\left(\frac{V}{U}\right) \\
Y & =e^{-\left(U^{2}+V^{2}\right) / 2}
\end{aligned}
$$

Then easy to see $\left|\operatorname{det} J_{X Y}(u, v)\right|=\frac{1}{\sqrt{2 \pi}} e^{-u^{2} / 2} \frac{1}{\sqrt{2 \pi}} e^{-v^{2} / 2}$.
22.(\#5.23) Find the PDF of $X-Y$, where $X \sim U[0,1], Y \sim U[0,1]$, and X and Y are independent.

Solution:

See Example 5.23 in section 5.5.
23. (\#5.65) Suppose X has a probability density function

$$
f(x)= \begin{cases}|x| & -1<x<1 \\ 0 & \text { otherwise }\end{cases}
$$

Let $Y=X^{2}$.
(a) Find $\operatorname{Cov}(X, Y)$;
(b) Are X and Y independent? Give your reasoning.

Solution:

(a) Using the formula for covariance function, we have $\operatorname{Cov}(X, Y)=E X Y-E X E Y=E X^{3}-$ $E X E Y$. Here we can see that the density of X is symmetric about y-axis, then we expect
the mean and third moment of X are 0 . To see this, let k be an odd number, we calculate $E\left(X^{k}\right)$.

$$
\begin{aligned}
E\left(X^{k}\right) & =\int_{-1}^{1} x^{k}|x| d x \\
& =\int_{-1}^{0}-x^{k+1} d x+\int_{0}^{1} x^{k+1} d x \\
& =-\left.\frac{x^{k+2}}{k+2}\right|_{-1} ^{0}+\left.\frac{x^{k+2}}{k+2}\right|_{0} ^{1} \\
& =\frac{-1}{k+2}+\frac{1}{k+2} \\
& =0
\end{aligned}
$$

Thus, we know that all the odd moments of X are 0 . Then we have $\operatorname{cov}(X, Y)=0$.
(b) Are X and Y independent? No, because it is given that Y is a function of X. X and Y are not independent even though they are uncorrelated.
24.(\#5.44). Suppose (X, Y) has a bivariate normal PDF

$$
f_{X Y}(x, y)=\frac{1}{2 \pi \sqrt{1-\rho^{2}}} e^{-\frac{1}{2\left(1-\rho^{2}\right)}\left(x^{2}-2 \rho x y+y^{2}\right)}
$$

Show that $\operatorname{corr}(X, Y)=\rho$.

Solution:

We first compute the marginal density of X and Y separately. The marginal density of X , is:

$$
\begin{aligned}
f_{X}(x) & =\int_{-\infty}^{\infty} \frac{1}{2 \pi \sqrt{1-\rho^{2}}} e^{-\frac{\left(x^{2}-2 \rho x y+y^{2}\right)}{2\left(1-\rho^{2}\right)}} d y \\
& =\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi} \sqrt{(1-\rho)^{2}}} e^{-\frac{y^{2}-2 \rho x y+(\rho x)^{2}+x^{2}-(\rho x)^{2}}{2\left(1-\rho^{2}\right)}} d y \\
& =\frac{1}{\sqrt{2 \pi}} e^{-\frac{x^{2}}{2}} \times \frac{1}{\sqrt{2 \pi\left(1-\rho^{2}\right)}} \int_{-\infty}^{\infty} e^{(y-\rho x)^{2} / 2\left(1-\rho^{2}\right)} d y \\
& =\frac{1}{\sqrt{2 \pi}} e^{-\frac{x^{2}}{2}}
\end{aligned}
$$

Thus, X is $N(0,1)$. Similarly, $Y \sim N(0,1) . E X=E Y=0$.
$\operatorname{corr}(X, Y)=\frac{\operatorname{cov}(X, Y)}{\sigma_{X} \sigma_{Y}}=\frac{E X Y-0}{1}=E X Y$. Then, we compute the covariance between X and Y.

$$
\begin{aligned}
E X Y & =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x y \frac{1}{2 \pi \sqrt{\left(1-\rho^{2}\right)}} e^{-\frac{x^{2}-2 \rho x y+y^{2}}{2\left(1-\rho^{2}\right)}} d x d y \\
& =\frac{\rho}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} x^{2} e^{-\frac{x^{2}}{2}} d x \\
& =\rho
\end{aligned}
$$

where the second to las equality comes from that the the mean for a random variable Y that follows $N\left(\rho x, 1-\rho^{2}\right)$ is ρx, and the last equality is because the second moment of a standard normal random variable is 1 .
25. A normal distributed, denoted as $N\left(\mu, \sigma^{2}\right)$, random variable has the moment generating function $M(t)=e^{\mu t+\frac{1}{2} \sigma^{2} t^{2}}$ for $-\infty<t<\infty$. Suppose $X \sim N\left(\mu_{1}, \sigma_{1}^{2}\right), Y \sim N\left(\mu_{2}, \sigma_{2}^{2}\right)$, and X and Y are independent. Find the distribution of $a_{1} X+a_{2} Y$. Give your reasoning.

Solution:

Denote $Z=a_{1} X+a_{2} Y$, then we need to find the distribution for Z. By the uniqueness theorem of MGF, we can identify the distribution of Z from its MGF.

$$
\begin{aligned}
M_{Z}(t) & =E\left(e^{t Z}\right) \\
& =E\left(e^{t\left(a_{1} X+a_{2} Y\right)}\right) \\
& =E\left(e^{a_{1} t X} e^{a_{2} t Y}\right) \\
\text { by independence } & =E\left(e^{a_{1} t X}\right) E\left(e^{a_{2} t Y}\right) \\
\text { by definition of MGF } & =M_{X}\left(a_{1} t\right) M_{Y}\left(a_{2} t\right) \\
& =e^{\mu_{1} a_{1} t+\frac{1}{2} \sigma_{1}^{2} a_{1}^{2} t^{2}} e^{\mu_{2} a_{2} t+\frac{1}{2} \sigma_{2}^{2} a_{2}^{2} t^{2}} \\
& =e^{\left(\mu_{1} a_{1}+\mu_{2} a_{2}\right) t+\frac{1}{2}\left(\sigma_{1}^{2} a_{1}^{2}+\sigma_{2}^{2} a_{2}^{2}\right) t^{2}} \\
& =e^{\mu t+\frac{1}{2} \sigma^{2} t^{2}}
\end{aligned}
$$

where $\mu=\mu_{1} a_{1}+\mu_{2} a_{2}$ and $\sigma^{2}=\sigma_{1}^{2} a_{1}^{2}+\sigma_{2}^{2} a_{2}^{2}$. Then we know that $Z=a_{1} X+a_{2} Y$ follows normal distribution with mean $\mu_{1} a_{1}+\mu_{2} a_{2}$ and variance $\sigma_{1}^{2} a_{1}^{2}+\sigma_{2}^{2} a_{2}^{2}$.
26. (\#5.47). Suppose the joint PDF of X, Y is a uniform PDF on the circle $x^{2}+y^{2} \leq 1$. Find (1) $E(Y \mid X) ;(2) \operatorname{var}(Y \mid X) ;(3)$ Are X and Y independent? Explain.

Solution:

(a) $f_{X}(x)=\int_{-\sqrt{1-x^{2}}}^{\sqrt{1-x^{2}}} \frac{1}{\pi} d y=\frac{2 \sqrt{1-x^{2}}}{\pi}$ for $-1 \leq x \leq 1$. Then we easily get $f_{Y \mid X}(y \mid x)=\frac{1}{2 \sqrt{1-x^{2}}}$. Therefore

$$
\begin{aligned}
E(Y \mid X) & =\int_{-\sqrt{1-x^{2}}}^{\sqrt{1-x^{2}}} y \frac{1}{2 \sqrt{1-x^{2}}} d y \\
& =\frac{1}{4 \sqrt{1-x^{2}}}\left(\left.y^{2}\right|_{-\sqrt{1-x^{2}}} ^{\sqrt{1-x^{2}}}\right)=0
\end{aligned}
$$

(b) Similarly we can calculate $E\left(Y^{2} \mid X\right)=\frac{1-x^{2}}{3}$. Then

$$
\begin{aligned}
\operatorname{var}(Y \mid X) & =E\left(Y^{2}\right)-(E(Y \mid X))^{2} \\
& =\frac{1-x^{2}}{3}
\end{aligned}
$$

(c) Since the conditional covariance is not a constant, X and Y are not independent.
27. Suppose (X, Y) have a joint PDF

$$
f_{X Y}(x, y)= \begin{cases}e^{-y}, & \text { if } 0<x<y<\infty \\ 0, & \text { otherwise }\end{cases}
$$

(a) Find $E(Y \mid X)$. Can you use X to predict $E(Y \mid X)$? Explain.
(b) Find $\operatorname{Var}(Y \mid X)$. Can you use X to predict $\operatorname{Var}(Y \mid X)$? Explain.

Solution:

Since we are dealing with the conditional mean and conditional variance on X, we need first calculate the marginal distribution of X.

$$
\begin{aligned}
f_{X}(x) & =\int_{x}^{\infty} e^{-y} d y \\
& =-\left.e^{-y}\right|_{0} ^{\infty} \\
& =e^{-x}, \text { for } x \in(0, \infty),
\end{aligned}
$$

and 0 elsewhere. Next, we calculate the conditional pdf $f_{Y \mid X}(y \mid x)$:

$$
\begin{aligned}
f_{Y \mid X}(y \mid x) & =\frac{f_{X Y}(x, y)}{f_{X}(x)} \\
& =e^{x-y}, \text { for } y \in(x, \infty), x \in(0, \infty)
\end{aligned}
$$

and 0 elsewhere.
(a) By definition

$$
\begin{aligned}
E(Y \mid X) & =\int_{x}^{\infty} y e^{x-y} d y \\
& =e^{x} \int_{x}^{\infty} y e^{-y} d y \\
& =e^{x} \int_{x}^{\infty}(-y) d e^{-y} \\
& =e^{x}\left[\left.(-y) e^{-y}\right|_{0} ^{\infty}+\int_{x}^{\infty} e^{-y} d y\right] \\
& =e^{x}\left(x e^{-x}+e^{-x}\right) \\
& =x+1, \text { for } x \in(0, \infty)
\end{aligned}
$$

Since the conditional mean function is a function of X, then we can use X to predict $E(Y \mid X)$.
(b) To find $\operatorname{Var}(Y \mid X)$, we need to first find $E\left(Y^{2} \mid X\right)$.

$$
\begin{aligned}
E\left(Y^{2} \mid X\right) & =\int_{x}^{\infty} y^{2} e^{x-y} d y \\
& =e^{x} \int_{x}^{\infty} y^{2} e^{-y} d y \\
& =e^{x} \int_{x}^{\infty}\left(-y^{2}\right) d e^{-y} \\
& =e^{x}\left[\left.\left(-y^{2}\right) e^{-y}\right|_{0} ^{\infty}+2 \int_{x}^{\infty} y e^{-y} d y\right] \\
& =e^{x}\left(x^{2} e^{-x}+2 e^{-x} x+2 e^{-x}\right) \\
& =x^{2}+2 x+2, \text { for } x \in(0, \infty)
\end{aligned}
$$

Then we know $\operatorname{Var}(Y \mid X)=E\left(Y^{2} \mid X\right)-[E(Y \mid X)]^{2}=1$. Since the conditional variance is a constant, we cannot use X to predict $\operatorname{Var}(Y \mid X)$
28. Show that the conditional mean $E(Y \mid X)$ is the optimal minimizer for the minimization problem of the mean squared error $E[Y-g(X)]^{2}$;that is

$$
E(Y \mid X)=\arg \min E[Y-g(X)]^{2},
$$

where the minimization is over all measurable and square-integrable functions.

Solution: See Theorem 5.25 in textbook.
29. Let X and Y be two random variables and $0<\sigma_{X}^{2}<\infty$. Show that if $E(Y \mid X)=a+b X$, then $b=\operatorname{cov}(X, Y) / \sigma_{X}^{2}$.

Solution: We know $\operatorname{Cov}(X, Y)=E(X Y)-E X E Y$. By Law of Iterated Expectation, we have $\operatorname{Cov}(X, Y)=E[X E(Y \mid X)]-\mathrm{E} X \mathrm{E}[E(Y \mid X)]$. Give $E(Y \mid X)=a+b X$, we have

$$
\begin{aligned}
\operatorname{Cov}(X, Y) & =E[X(a+b X)]-E X E(a+b X) \\
& =E\left[a X+b X^{2}\right]-E X(a+b E X) \\
& =a E X+b E X^{2}-a E X-b(E X)^{2} \\
& =b\left[E X^{2}-(E X)^{2}\right] \\
& =b \sigma_{X}^{2}
\end{aligned}
$$

Given $0<\sigma_{X}^{2}<\infty$, dividing σ_{X}^{2} on both sides will give us $b=\operatorname{Cov}(X, Y) / \sigma_{X}^{2}$.
30. Suppose $E(Y \mid X)=1+2 X$ and $\operatorname{var}(X)=2$. Find $\operatorname{cov}(X, Y)$.

Solution: From the result in Q 22 note to change the order, we know $\operatorname{Cov}(X, Y)=$ $b * \operatorname{Var}(X)$. In this question, $\operatorname{Var}(X)=2$ and $b=2$. Then we have $\operatorname{Cov}(X, Y)=2 * 2=4$.
31. (\# 5.50) Suppose X and Y are random vaiables such that $E\left(E(Y \mid X)=7-\frac{1}{4} X\right.$ and $E(E(X \mid Y))=10-Y$. Determine the correlation between X and Y.

Solution:

$$
\begin{aligned}
& E(Y)=E(E(Y \mid X))=7-\frac{1}{4} E(X) \\
& E(X)=E(E(X \mid Y))=10-E(Y)
\end{aligned}
$$

We get $E(X)=4$ and $E(Y)=6$.

$$
\begin{aligned}
E(X Y) & =E(E(X Y \mid X))=E(X E(Y \mid X)) \\
& =7 E(X)-\frac{1}{4} E\left(X^{2}\right) \\
& =28-\frac{1}{4}\left(\operatorname{Var}(X)+E^{2}(X)\right) \\
& =24-\frac{1}{4} \operatorname{Var}(X) \\
& \Longrightarrow \operatorname{Var}(X)=4(24-E(X Y)) \\
& =10 E(Y)-E\left(Y^{2}\right) \\
& =60-\left(\operatorname{Var}(Y)+E^{2}(Y)\right) \\
& =24-\operatorname{Var}(Y) \\
\operatorname{Corr}(X, Y)= & \frac{\operatorname{Var}(Y)=24-E(X Y)}{\sqrt{\operatorname{Var}(X) \operatorname{Var}(Y)}=\frac{E(X Y)-E(X) E(Y)}{\sqrt{\operatorname{Var}(X) \operatorname{Var}(Y)}}} \\
= & \frac{E(X Y)-24}{\sqrt{(24-E(X Y)) 4(24-E(X Y))}}=-\frac{1}{2}
\end{aligned}
$$

32. Show $\operatorname{var}(Y \mid X)=E\left(Y^{2} \mid X\right)-[E(Y \mid X)]^{2}$.

Solution:

By defintion

$$
\begin{aligned}
\operatorname{Var}(Y \mid X=x)= & \int[y-E(Y \mid X=x)]^{2} d F_{Y \mid X}(y \mid x) \\
= & \int\left[y^{2}-2 y E(Y \mid X=x)+E(Y \mid X=x)^{2}\right] d F_{Y \mid X}(y \mid x) \\
= & \int y^{2} d F_{Y \mid X}(y \mid x)-2 E(Y \mid X=x) \int y d F_{Y \mid X}(y \mid x) \\
& +E(Y \mid X=x)^{2} \int d F_{Y \mid X}(y \mid x) \\
= & E\left(Y^{2} \mid X=x\right)-2 E(Y \mid X=x) E(Y \mid X=x)+E(Y \mid X=x)^{2} \\
= & E\left(Y^{2} \mid X=x\right)-E(Y \mid X=x)^{2}
\end{aligned}
$$

33.(\# 5.60) For any two random variables X and Y with finite variances, show:
(a) $\operatorname{cov}(X, Y)=\operatorname{cov}(X, E(Y \mid X))$.
(b) X and $Y-E(Y \mid X)$ are uncorrelated.
(c) $\operatorname{var}[Y-E(Y \mid X)]=E[\operatorname{var}(Y \mid X)]$.

Solution:

(a)

$$
\begin{aligned}
\operatorname{Cov}(X, E(Y \mid X)) & =E(X E(Y \mid X))-E(X) E(E(Y \mid X))=E(E(X Y \mid X))-E(X) E(Y) \\
& =E(X Y)-E(X) E(Y)=\operatorname{Cov}(X, Y)
\end{aligned}
$$

(b)

$$
\begin{aligned}
\operatorname{Cov}(X, Y-E(Y \mid X)) & =E(X(Y-E(Y \mid X)))-E(X) E(Y-E(Y \mid X)) \\
& =E(X Y-X E(Y \mid X))-E(X)(E(Y)-E(E(Y \mid X))) \\
& =E(X Y)-E(E(X Y \mid X))-E(X)(E(Y)-E(Y)) \\
& =E(X Y)-E(X Y)=0
\end{aligned}
$$

(c)

$$
\begin{aligned}
\operatorname{Var}(Y-E(Y \mid X)) & =E(Y-E(Y \mid X))^{2}-E^{2}(Y-E(Y \mid X)) \\
& =E(Y-E(Y \mid X))^{2} \\
& =E\left(Y^{2}-2 Y E(Y \mid X)+E^{2}(Y \mid X)\right) \\
& =E\left(E\left(Y^{2} \mid X\right)-2 E(Y \mid X) E(Y \mid X)+E^{2}(Y \mid X)\right) \\
& =E\left(E\left(Y^{2} \mid X\right)-E^{2}(Y \mid X)\right)=E(\operatorname{Var}(Y \mid X))
\end{aligned}
$$

34. $(\#$ 5.61) (a)Suppose $E(Y \mid X)=E(Y)$. Show $\operatorname{cov}(X, Y)=0$. (b) Does $\operatorname{cov}(X, Y)=0$ imply $E(Y \mid X)=E(Y)$? If yes, prove it. If not, provide an example.

Solution:

(a)

$$
\begin{aligned}
\operatorname{Cov}(X, Y) & =E(X Y)-E(X) E(Y) \\
& =E(E(X Y \mid X))-E(X) E(Y) \\
& =E(X E(Y \mid X))-E(X) E(Y) \\
& =E(X E(Y))-E(X) E(Y) \\
& =E(X) E(Y)-E(X) E(Y) \\
& =0
\end{aligned}
$$

(b) No. $E(Y \mid X)=1(|X-\theta|<2)$ varies with X .
35.(\#5.32) Suppose the distribution of Y, conditional on $X=x$, is $N\left(x, x^{2}\right)$ and that the marginal distribution of X is uniform $(0,1)$.
(a) Find $E(Y)$, $\operatorname{var}(Y)$, and $\operatorname{cov}(X, Y)$;
(b) Prove that Y / X and X are independent.

Solution:

(a) $E(Y)=E(E(Y \mid X))=E(X)=1 / 2$
$E\left(Y^{2}\right)=E\left(E\left(Y^{2} \mid X\right)\right)=2 E\left(X^{2}\right)=2 / 3$
$\operatorname{var}(Y)=E\left(Y^{2}\right)-E(Y)^{2}=5 / 12$
$\operatorname{cov}(X, Y)=E(X Y)-E(X) E(Y)=E(X(E(Y \mid X)))-1 / 4=1 / 12$
(b) Let $U=Y / X$ and $V=X$, easy to show that $f_{U V}(u, v)=\frac{1}{\sqrt{2 \pi}} e^{-\frac{(u-1)^{2}}{2}}$. By factorization theorem, U and V are independent.
36.(\#5.33) Consider two random variables (X, Y). Suppose X is uniformly distributed over $(-1,1)$, that is, the pdf of X is

$$
f_{X}(x)= \begin{cases}\frac{1}{2} & -1<x<1 \\ 0 & \text { otherwise }\end{cases}
$$

Also, the conditional pdf of Y give $X=x$ is

$$
f_{Y \mid X}(y \mid x)=\frac{1}{\sqrt{2 \pi}} e^{-\frac{(y-\alpha-\beta x)^{2}}{2}} \quad \text { for }-\infty<y<\infty \text { and }-1<x<1 .
$$

Find: (a) $E(Y) ;(b) \operatorname{cov}(X, Y)$.

Solution:

(a) Since the conditional pdf of Y given X is a normal distribution, we know $E(Y \mid X)=\alpha+\beta X$. Then $E(Y)=E(E(Y \mid X))=\alpha$
(b) $\operatorname{cov}(X, Y)=E(X Y)-E(X) E(Y)=E\left(\alpha X+\beta X^{2}\right)=\beta / 3$
37.(\#5.38) A generalization of the beta distribution is the Dirichlet distribution. In its bivariate version, (X, Y) have a joint $\operatorname{PDF} f_{X Y}(x, y)=k x^{a-1} y^{b-1}(1-x-y)^{c-1}, 0<x<1$, $0<y<1,0<y<1-x<1$, where $a>0, b>0$, and $c>0$ are constants.
(a) Show that $k=\frac{\Gamma(a+b+c)}{\Gamma(a) \Gamma(b) \Gamma(c)}$;
(b) Show that, marginally, both X and Y are Beta;
(c) Find the conditional distribution of $Y \mid X=x$, and show that $Y \mid(1-X)$ is $\operatorname{Beta}(b, c)$;
(d) Show that $E(X Y)=\frac{a b}{(a+b+c+1)(a+b+c)}$, and find the covariance $\operatorname{cov}(X, Y)$.

Solution:

(a) Let $z=\frac{y}{1-x}$, we have

$$
\begin{aligned}
\iint f_{X Y}(x, y) d x d y & =1 \\
\int_{0}^{1} \int_{0}^{1-x} k x^{\alpha-1} y^{b-1}(1-x-y)^{c-1} d x d y & =1 \\
\int_{0}^{1} \int_{0}^{1} k x^{a-1} z^{b-1}(1-x)^{b-1}(y / z-y)^{c-1}(1-x) d z d x & =1 \\
k B(a, b+c) B(b, c) & =1
\end{aligned}
$$

(b) Similar to part (a), we still let $z=\frac{y}{1-x}$:

$$
\begin{aligned}
f_{X}(x) & =\int_{0}^{1} k x^{a-1}(1-x)^{b+c+1} z^{b-1}(1-z)^{c-1} d z \\
& =\frac{\Gamma(a+b+c)}{\Gamma(a) \Gamma(b+c)} x^{a-1}(1-x)^{b+c-1}
\end{aligned}
$$

$f_{Y}(y)$ is similar.
(c)

$$
\frac{f_{X Y}(x, y)}{f_{X}(x)}=\frac{\Gamma(b+c)}{\Gamma(b) \Gamma(c)} \frac{y^{b-1}(1-x-y)^{c-1}}{(1-x)^{b+c-1}}
$$

for $0<x<1,0<y<1,0<y<1-x<1$. Let $U=Y /(1-X)$ and $V=1-X$. Easy to show

$$
f_{U V}(u, v)=\frac{\Gamma(a+b+c)}{\Gamma(a) \Gamma(b+c)} v^{b+c-1}(1-v)^{a-1} \frac{\Gamma(b+c)}{\Gamma(b) \Gamma(c)} u^{b-1}(1-u)^{c-1}
$$

Then

$$
\begin{aligned}
f_{U}(u) & =\int_{0}^{1} \frac{\Gamma(a+b+c)}{\Gamma(a) \Gamma(b+c)} v^{b+c-1}(1-v)^{a-1} \frac{\Gamma(b+c)}{\Gamma(b) \Gamma(c)} u^{b-1}(1-u)^{c-1} d v \\
& =\frac{\Gamma(b+c)}{\Gamma(b) \Gamma(c)} u^{b-1}(1-u)^{c-1} \int_{0}^{1} \frac{\Gamma(a+b+c)}{\Gamma(a) \Gamma(b+c)} v^{b+c-1}(1-v)^{a-1} d v \\
& =\frac{\Gamma(b+c)}{\Gamma(b) \Gamma(c)} u^{b-1}(1-u)^{c-1}
\end{aligned}
$$

for $0<u<1$
(d)

$$
\begin{aligned}
E(X Y) & =E\left(X(1-X) E\left(\left.\frac{Y}{1-X} \right\rvert\, X\right)\right) \\
& =E\left(X(1-X) \frac{b}{b+c}\right) \\
& =\frac{b}{b+c}\left(\frac{a}{a+b+c}-\frac{a}{a+b+c} \frac{a+1}{a+b+c+1}\right) \\
& =\text { RHS }
\end{aligned}
$$

$$
\operatorname{cov}(X, Y)=E(X Y)-E(X) E(Y)=R H S
$$

38. $(\# 5.45)$ Suppose (X, Y) follows a standard bivariate normal distribution with correlation coefficient ρ. Define $U=(Y-\rho X) / \sqrt{1-\rho^{2}}$. Show that U is normally distributed and independent of X.

Solution: Let $V=X$. We have

$$
\begin{aligned}
f_{U V}(u, v) & =f_{X Y}(x, y)\left|\operatorname{det}\left(J_{U V}(x, y)\right)\right|^{-1} \\
& =\frac{1}{2 \pi \sqrt{1-\rho^{2}}} e^{-\frac{1}{2\left(1-\rho^{2}\right)}\left(x^{2}+y^{2}-2 \rho x y\right)} \sqrt{1-\rho^{2}} \\
& =\frac{1}{\sqrt{2 \pi}} e^{-u^{2} / 2} \frac{1}{\sqrt{2 \pi}} e^{-v^{2} / 2}
\end{aligned}
$$

By factorization theorem, U and X are independent. Also, $f_{U}(u)=\frac{1}{\sqrt{2 \pi}} e^{-u^{2} / 2} \int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi}} e^{-v^{2} / 2} d v=$ $\frac{1}{\sqrt{2 \pi}} e^{-u^{2} / 2}$.
39.(\#5.57) Suppose (X, Y) have a joint PDF

$$
f_{X Y}(x, y)= \begin{cases}x e^{-y}, & \text { if } 0<x<y<\infty \\ 0, & \text { otherwise }\end{cases}
$$

(a) Find the conditional pdf $f_{Y \mid X}(y \mid x)$ of Y given $X=x$.
(b) Find the conditional mean $E(Y \mid x)$;
(c) Find the conditional variance $\operatorname{var}(Y \mid x)$;
(d) Are X and Y independent? Give your reasoning.

Solution:

(a) First get $f_{X}(x)=x e^{-x}$ for $0<x<\infty$. Then $f_{Y \mid X}(y \mid x)=\frac{x e^{-y}}{x e^{-x}}=e^{x-y}$ for $0<x<y<\infty$.
(b)

$$
\begin{aligned}
E(Y \mid X) & =\int_{x}^{\infty} y e^{x-y} d y \\
& =x+1
\end{aligned}
$$

(c) Similarly we get $E\left(Y^{2} \mid X\right)=x^{2}+2 x+2$. Then we have $\operatorname{var}(Y \mid X)=E\left(Y^{2}\right)-(E(Y \mid X))^{2}=1$
(d) $f_{Y}(y)=\frac{1}{2} y^{2} e^{-y}$ for $0<y<\infty$. Since $f_{X Y}(x, y) \neq f_{X}(x) f_{Y}(y)$, they are not independent.

