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Probability and Statistics for Economists
Chapter 3 Random Variables and Univariate Probability Distributions

1. Seven balls are distributed randomly into seven cells. Let Xi = the number of cells containing
exactly i balls. What is the probability distribution of X3? (That is, find P (X = x) for every
possible x.)
Solution:

There are 77 equally likely sample points. The possible values of X3 are 0, 1 and 2. Only the
pattern 331 (3 balls in one cell, 3 balls in another cell and 1 ball in a third cell) yields X3 = 2. The
number of sample points with this pattern is

(
7
2

)(
7
3

)(
4
3

)
5 = 14,700. So P (X3 = 2) = 14, 700/77 ≈

.0178. There are 4 patterns that yield X3 = 1. The number of sample points that give each of
these patterns is given below.

pattern number of sample points

34 7
(
7
3

)
6 = 1470

322 7
(
7
3

)(
6
2

)(
4
2

)(
2
2

)
= 22050

3211 7
(
7
3

)
6
(
4
2

)(
5
2

)
2! = 176400

31111 7
(
7
3

)(
6
4

)
4! = 88200

sum = 288120

So P (X3 = 1) = 288120/77 ≈ 0.3498. The number of sample points that yield X3 = 0 is 77 −
288120− 14700 = 520723, and P (X3 = 0) = 520723/77 ≈ 0.6322.
2. Prove that the following functions are cumulative distribution functions (CDF’s):

(1) 1
2 + 1

π tan−1(x), x ∈ (−∞,+∞);
(2) (1 + e−x)−1, x ∈ (−∞,+∞);
(3) e−e

−x
, x ∈ (−∞,+∞);

(4) 1− e−x, x ∈ (0,+∞), and 0, x ≤ 0.
Solution:

All of the functions are continuous, hence right-continuous. Thus we only need to check the
limit, and that they are nondecreasing.
(a) lim

x→−∞
1
2+ 1

π tan−1(x) = 1
2+ 1

π

(−π
2

)
= 0, lim

x→∞
1
2+ 1

π tan−1(x) = 1
2+ 1

π

(
π
2

)
= 1, and d

dx

(
1
2 + 1

π tan−1(x)
)

=

1
1+x2

> 0

(b) lim
x→−∞

(1 + e−x)
−1

= 0, lim
x→∞

(1 + e−x)
−1

= 1, ddx (1 + e−x)
−1

= e−x

(1+e−x)2
> 0

(c) lim
x→−∞

e−e
−x

= 0, lim
x→∞

e−e
−x

= 1, ddxe
−e−x = e−xe−e

−x
> 0

(d) lim
x→−∞

(1− e−x) = 0, lim
x→∞

(1− e−x) = 1, ddx(1− e−x) = e−x > 0

3. A CDF FX is stochastically greater than a CDF FY if FX(t) ≤ FY (t) for all t and FX(t) < FY (t)
for some t. Prove that if X ∼ FX and Y ∼ FY , then

P (X > t) ≥ P (X > t) for every t

P (X > t) > P (X > t) for some t,

that is, X tends to be bigger than Y .
Solution:
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By definition of CDF function, FX(t) = P (X ≤ t) = 1 − P (X > t). Thus FX(t) ≤ FY (t) ⇐⇒
1− P (X > t) ≤ 1− P (Y > t)⇔ P (X > t) ≥ P (Y > t) for every t.

And FX(t) < FY (t)⇐⇒ 1− P (X > t) < 1− P (Y > t)⇔ P (X > t) > P (Y > t) for some t.
4. Suppose X = X1 with probability p and X = X2 with probability 1 − p, where p ∈ (0, 1), X1

and X2 are random variables with CDF’s F1(x) and F2(x) respectively. Find the CDF of X.
Solution:

FX(x) = Pr(X ≤ x)

= p× Pr(X1 ≤ x) + (1− p)× Pr(X2 ≤ x)

= pF1(x) + (1− p)F2(x)

5. Let f(x) = c
x for x = 1, 2, · · · and c is a constant. Can you find a finite value for constant c so

that f(x) is a valid PMF? If yes, give the value of c. Otherwise, explain why not.
Solution:

Yes. Proof skipped.
6. An investment firm offers its customers municipal bonds that mature after varying numbers of
years. Given that the cumulative distribution of T, the number of years to maturity for a randomly
selected bond is

F (t) =


0, t < 1,
1
4 , 1 ≤ t < 3,
1
2 , 3 ≤ t < 5,
3
4 , 5 ≤ t < 7,
1, t ≥ 7.

Find (1) P (T = 5); (2) P (T > 3); and (3) P (1.4 < T < 6). Give your reasoning.
Solution:

(a)

P (T = 5) = lim
δ→0+

[1− Pr (T > 5 + δ)− Pr (T < 5− δ)]

= lim
δ→0+

[1− (1− Pr (T ≤ 5 + δ))− Pr (T < 5− δ)]

= lim
δ→0+

[F (5 + δ)− F (5− δ)]

=
3

4
− 1

2
=

1

4

(b) P (T > 3) = 1− P (T ≤ 3) = 1− 1
2 = 1

2
(c) P (1.4 < T < 6) = P (T < 6)− P (T ≤ 1.4) = 3

4 −
1
4 = 1

2
(d)

f(t) =
1

4
if t=1

=
1

4
if t=3

=
1

4
if t=5

=
1

4
if t=7

= 0 otherwise.
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7. For each of the following, determine the value of c that makes f(x) a PDF:
(1) f(x) = c sinx, 0 < x < π

2 ;

(2) f(x) = ce−|x|,−∞ < x <∞.
Solution:

(1)
∫ π/2
0 sinxdx = 1. Thus, c = 1.

(2)
∫∞
−∞ e

−|x|dx =
∫ 0
−∞ e

xdx+
∫∞
0 e−xdx = 1 + 1 = 2. Thus, c = 0.5.

8. Suppose X has the geometric PMF fX(x) = 1
3(23)x, x = 0, 1, 2, .... Determine the probability

distribution of Y = X/(X + 1). Note that here both X and Y are discrete random variables. To
specify the probability distribution of Y , specify its PMF.
Solution:

P (Y = y) = P ( X
X+1 = y) = P (X = y

1−y ) = 1
3(23)y/(1−y), where y = 0, 12 ,

2
3 ,

3
4 , · · · ,

x
x+1 , · · ·

and 0 elsewhere.
9. Let X have the PDF

fX(x) = 4
β3
√
π
x2e−x

2/β2
, 0 < x <∞, β > 0.

Verify that fX(x) is indeed a PDF. [Hint: you may use the property that the integral of the pdf of
a normal random variable is 1.]
Solution:

By definition of PDF, f(x) must satisfy the following properties:

• f(x) ≥ 0
Thus, β > 0 for all −∞ < x <∞

•
∫∞
−∞ f(x)dx = 1

LHS =
4

β3
√
π

∫ ∞
−∞

(
x

β
)2e
−( x

β
)2
β2β

1

2
(
x

β
)−1d(

x

β
)2

=
2√
π

∫ ∞
−∞

z
3
2
−1e−zdz

=
2√
π

Γ(
3

2
)

= 1

(1)

Since Γ(32) = 1
2Γ(1) =

√
π
2

10. Let f(x) = c
x for x = 1, 2, · · · and c is a constant. Can you find a finite value for constant c so

that f(x) is a valid PMF? If yes, give the value of c. Otherwise, explain why not.
Solution:

Since −1 < 1 + 2sinx < 3 where −π < x < π, there is no possible value of c ensuring that the
pdf f(x) ≥ 0 for −π < x < π.
11. Check for what value(s) of k that the following function can be a PDF:

f(x) =

{
1
2 + kx, −1 ≤ x ≤ 1,
0, otherwise.

Give your reasoning.
Solution:

• If c ≥ 0, then by definition of PDF, f(x) = 1
2 + cx ≥ 0 → 0 ≤ c ≤ 1

2
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• If c ≤ 0, then by definition of PDF, f(x)12 + cx ≥ 0 → −1
2 ≤ c ≤ 0

12. Suppose fX(x) and fY (y) are two PDF’s. Define g(z) =
∫∞
−∞ fX(z−y)fY (y)dy. Is g(z) a PDF?

Explain.
Solution:

Easy to see f(z) ≥ 0. To show
∫∞
−∞ f(z)dz = 1, notice that

∫ ∞
−∞

f(z)dz =

k∑
i=1

∫ ∞
−∞

y−1i fX(z/yi)fY (yi)dz =

k∑
i=1

fY (yi) = 1

13. In each of the following, find the PDF of Y and show that the PDF integrates to 1:
(1) fX(x) = 1

2e
−|x|, −∞ < x <∞; Y = |X|3 ;

(2) fX(x) = 3
8(x+ 1)2, −1 < x < 1; Y = 1−X2.

Solution:
(1)The support of Y is ΩY = {y ∈ R : y > 0}. We apply the CDF approach to figure out the

density function of Y = |X|3

FY (y) = P (Y ≤ y) = P (|X|3 ≤ y)

= P (|X| ≤ y
1
3 )

= P (−y
1
3 ≤ X ≤ y

1
3 )

= FX(y
1
3 )− FX(−y

1
3 )

(2)

fY (y) =
∂FY (y)

∂y
= fX(y

1
3 )

1

3
y−

2
3 − fX(−y

1
3 )

1

3
(−1)y−

2
3

=
1

3
e−y

1
3 y−

2
3

(3)

Thus, the PDF of random variable Y is:

fY (y) =

{
1
3e
−y

1
3 y−

2
3 y > 0

0 otherwise
(4)

To test the integral of PDF fY (y) over the support ΩY , we have the following result:∫ ∞
0

fY (y)dy =

∫ ∞
0

e−y
1
3 dy

1
3

= −ez|∞0 by changing variables, define z = y
1
3

= 1

(5)

(2) The support of Y is ΩY = {y ∈ R : 0 < y < 1}. We apply the CDF approach to figure out
the density function of Y = 1−X2

FY (y) = P (1−X2 ≤ y)

= P (X2 ≥ 1− y)

= P (X ≥
√

(1− y)) + P (X ≤ −
√

1− y)

= 1− FX(
√

1− y) + FX(−
√

1− y)

(6)
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fY (y) =
∂FY (y)

∂y

= fX(
√

1− y)
1

2
(1− y)−

1
2 + fX(−

√
1− y)

1

2
(1− y)−

1
2

=
3

16
(1− y)−

1
2 (1 + 1− y + 2

√
(1− y) + 1 + 1− y − 2

√
(1− y))

=
3

8
(1− y)−

1
2 +

3

8
(1− y)

1
2

(7)

Thus, the PDF of random variable Y is:

fY (y) =

{
3
8(1− y)−

1
2 + 3

8(1− y)
1
2 0 < y < 1

0 otherwise
(8)

To test whether or not the integral of the PDF function equals to 1, we have the following result:∫ 1

0
fY (y)dy =

3

8

∫ 1

0
(1− y)−

1
2dy +

3

8

∫ 1

0
(1− y)

1
2dy

=
3

8

∫ 1

0
z−

1
2dz +

3

8

∫ 1

0
z

1
2dz by changing variables, z=1-y

=
3

4
+

1

4
= 1

(9)

14. Let X have PDF fX(x) = 2
9(x+ 1), −1 ≤ x ≤ 2. Find the PDF of Y = X2.

Solution:
See section notes or previous homework.

15.fX(x) = 1
2 for 0 < x < 2. Find the PDF of Y = X(2−X).

Solution:
The support of random variable Y is Ω = {y ∈ R : 0 < y < 1}, since the mapping between X

and Y is not monotone, we apply the CDF approach here.

FY (y) = P (X(2−X) ≤ y)

= P (X2 − 2X − y ≥ 0) since 0 < y < 1, ∆ =
√

1 − y is well-defined and it guarantees real solutions

= P (X ≥ 1 +
√

1− y) + P (X ≤ 1−
√

1− y)

= 1− F (1 +
√

1− y) + F (1−
√

1− y)
(10)

fY (y) =
∂FY (y)

∂y

=
1

2
(1− y)−

1
2

(11)

Thus, the PDF of the random variable Y is:

fY (y) =

{
1
2(1− y)−

1
2 0 < y < 1

0 otherwise
(12)

16. (1) Let X be a continuous, nonnegative random variable, i.e., f(x) = 0 for x < 0. Show that
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E(X) =
∫∞
0 [1− FX(x)] dx, where FX(x) is the CDF of X;

(2) Let X be a discrete random variable whose range is nonnegative integers. Show E(X) =∑∞
k=0[1− FX(k)], where FX(k) = P (X ≤ k). Compare this with Part (1).

Solution:
(1) ∫ ∞

0
[1− FX(x)]dx =

∫ ∞
0

P (X > x)dx =

∫ ∞
0

[∫ ∞
x

fX(y)dy

]
dx

=

∫ ∞
0

[∫ y

0
fX(y)dx

]
dy =

∫ ∞
0

[
fX(y)

∫ y

0
dx

]
dy

=

∫ ∞
0

[fX(y)y] dy = E(X)

(2)

∞∑
k=0

[1− FX(k)] =

∞∑
k=0

P (X > k)

= P (X = 1) + P (X = 2) + P (X = 3) + . . .

+P (X = 2) + P (X = 3) + . . .+ P (X = 3) + . . .

=
∞∑
k=1

kP (X = k) =
∞∑
k=1

kP (X = k) + 0P (X = 0)

= E(X)

17. Show that if X is a continuous random variables, then

min
a
E |X − a| = E |X −m| ,

where m is the median of X.
Solution:

Let m be the median. By definition,
∫m
−∞ f(x)dx = 1

2 . Cauchy distribution Cauchy(0,1)∫ m

−∞

1

π(1 + x2)
dx =

1

π
arctanx|m−∞ =

1

π
(arctanm+

π

2
) =

1

2

So m = 0. That is , the median of this Cauchy distributionis 0. (f(x) is symmetric about 0, thus
the median and mean is 0).
18. Let X have the PDF

f(x) =
4

β3
√
π
x2e−x

2/β2
, 0 < x <∞, β > 0

Find E(X) and Var(X).
Solution:
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(1)

E(X) =
4

β3
√
π

∫ ∞
0

xx2e
−x2
β2 dx

=
4β4

β3
√
π

∫ ∞
0

1

2

x2

β2
e
− x

2

β2 d
x2

β2

=
2β√
π

∫ ∞
0

ze−zdz by changing variables, z =
x2

β2

=
2β√
π

Γ(2)

=
2β√
π

(13)

(2)

E(X2) =
4

β3
√
π

∫ ∞
0

xx3e
− x

2

β2 dx

=
4β5

β3
√
π

∫ ∞
0

1

2

x3

β3
e
− x

2

β2 d
x2

β2

=
2β2√
π

∫ ∞
0

z
3
2 e−zdz by changing variable, z =

x2

β2

=
2β2√
π

Γ(
3

2
+ 1)

=
2β2√
π

3

2
Γ(

1

2
+ 1)

=
2β2√
π

3

4

√
π since Γ(

1

2
=
√
π)

=
3

2
β2

(14)

Thus, the variance of random variable X is

V ar(X) = EX2 − (EX)2 =
3

2
β2 − 4

π
β2 (15)

19. Let f(x) be a PDF, and let a be a number such that, for all ε > 0, f(a+ ε) = f(a− ε). Such a
pdf is said to be symmetric about the point a.

(1) Give three examples of symmetric PDF’s;
(2) Show that if X ∼ f(x), symmetric, then the median of X is the number a;
(3) Show that if X ∼ f(x), symmetric, and E(X) exists,then E(X) = a.

Solution:
(1)Three examples of symmetric pdfs: U [0, 1]: symmetric about 1

2 ; Cauchy(0,1): f(x) = 1
π(1+x2)

for x ∈ R, symmetric about 0; N(0, 1): symmetric about 0.
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(2)To show
∫ a
−∞ f(x)dx =

∫∞
a f(x)dx = 1

2 :∫ a

−∞
f(x)dx =

∫ ∞
0

f(a− ε)dε letting x = a− ε

=

∫ ∞
0

f(a+ ε)dε by symmetry of f(·)

=

∫ ∞
a

f(x)dx letting x = a+ ε

And
∫ a
−∞ f(x)dx+

∫∞
a f(x)dx = 1. So

∫ a
−∞ f(x)dx =

∫∞
a f(x)dx = 1

2 . Hence a is the median.
(3)To show EX = a

EX − a = E(X − a) =

∫ ∞
−∞

(x− a)f(x)dx

=

∫ a

−∞
(x− a)f(x)dx+

∫ ∞
a

(x− a)f(x)dx

=

∫ ∞
0

(−ε)f(a− ε)dε+

∫ ∞
0

εf(a+ ε)dε

= −
∫ ∞
0

εf(a+ ε)dε+

∫ ∞
0

εf(a+ ε)dε = 0

20. A random variable X is said to have a two-piece normal distribution with parameter α, σ1, σ2
if its PDF

fX(x) =


Ae−(x−α)

2/(2σ2
1), x ≤ α,

Ae−(x−α)
2/(2σ2

2), x > α.

Find: (1) the constant A; (2) the mean of X; (3) the variance of X.
Solution:

(1) for ∀x ∈ R, fX(x) ≥ 0 iff A ≥ 0; There exists a A such that
∫ +∞
−∞ fX(x)dx = 1;

LHS = A

∫ α

−∞
e
− (x−α)2

2σ21 dx+A

∫ ∞
α

e
− (x−α)2

2σ22 dx

= A(
√

2πσ1)

∫ α

−∞

1√
2πσ1

e
− (x−α)2

2σ21 dx+A(
√

2πσ2)

∫ α

−∞

1√
2πσ2

e
− (x−α)2

2σ22 dx

= A(
√

2πσ1)
1

2
+A(

√
2πσ2)

1

2

= A

√
π

2
(σ1 + σ2)

Thus, A =

√
2
π

σ1+σ2
, which also satisfies the non-negativity condition above. Trick: Apply the

property of symmetric functions.
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(2) Find the mean of X By definition

EX =

∫ ∞
−∞

xfX(x)dx

= A

∫ α

−∞
xe
− (x−α)2

2σ21 dx+A

∫ +∞

α
xe
− (x−α)2

2σ22 dx

= A

∫ α

−∞
(x− α)e

− (x−α)2

2σ21 dx+A

∫ ∞
α

(x− α)e
− (x−α)2

2σ22 dx

+Aα

∫ α

−∞
e
− (x−α)2

2σ21 dx+Aα

∫ +∞

α
e
− (x−α)2

2σ22 dx (by adding and subtracting)

= −Aσ21e
− (x−α)2

2σ21 |α−∞ −Aσ22e
− (x−α)2

2σ22 |+∞α +Aα
√

2πσ1
1

2
+Aα

√
2πσ2

1

2

=

√
2

π
(σ2 − σ1) + α

Trick: by using adding and subtracting, changing variables and property of symmetric
functions

(3) Find the variance of X By definition, V ar(X) = EX2 − (EX)2, we start by computing the
second moment of r.v. X:

EX2 =

∫ ∞
−∞

x2fX(x)dx

= A

∫ α

−∞
x(x− α)e

− (x−α)2

2σ21 dx+A

∫ +∞

α
x(x− α)e

− (x−α)2

2σ22 dx

+Aα

∫ α

−∞
xe
− (x−α)2

2σ21 dx+Aα

∫ ∞
α

xe
− (x−α)2

2σ22 dx

= −Aσ21
∫ α

−∞
xd(e

− (x−α)2

2σ21 )−Aσ22
∫ ∞
α

xd(e
− (x−α)2

2σ22 ) + αEX

= −Aσ21α+Aσ22α+Aσ31
√

2π
1

2
+Aσ32

√
2π

1

2
+ αEX

Thus, Plugging EX2 and EX back into the equation, we can compute the variance of X Trick:
Applying changing variables, integrating by part and property of symmetric functions
21. Suppose a discrete random variable X has the following distribution

PX(x) = (1− γ)γx, x = 0, 1, · · ·,

where γ is a fixed parameter and 0 < γ < 1. Find: (1) the MGF of X; (2) the mean and the
variance. [Hint: use the formula

∑∞
x=0 a

x = 1
1−a for |a| < 1.]

Solution:
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(1)

MX(t) = Eetx =
∞∑
x=0

(1− r)rxetx

= (1− r)
∞∑
x=0

(ret)x

When there is a small number ε(≤ ln 1
r ) > 0 such that ∀t ∈ (−ε, ε), |ret| < 1. Then

∑∞
x=0(re

t)x =
1

1−ret . So MX(t) = 1−r
1−ret .

(2)

EX = M ′X(0) = (1− r) ret

(1− ret)2
|t=0 =

(1− r)r
(1− r)2

=
r

1− r

EX2 = M”
X(0) =

(1− r)(ret + (ret)2)

(1− ret)3
|t=0 =

r(1 + r)

(1− r)2

V ar(X) = EX2 − (EX)2 =
r

(1− r)2

22. Suppose that a discrete random variable X has variance σ2X = 1
2 and moment generating

function
MX(t) = a+ b(e−t + et), −∞ < t <∞.

Find the PMF fX(x) of X and justify your answer.
Solution:

Following the same methods in question 5, it is easy to find that a = 1
2 and b = 1

4 . And the
unique PDF of X is:

fX(x) =


1
2 if X = 0
1
4 if X = −1
1
4 if X = 1
0 otherwise

23. Let X and Y be two discrete random variables with the identical set of possible values Ω =
{a1, a2, ..., an}, where the ai’s are n different real numbers. Show that if E(Xk) = E(Y k) for
k = 1, 2, ..., n − 1, then X and Y are identically distributed; that is, P (X = t) = P (Y = t) for
t ∈ {a1, ..., an}.
Solution: Define a n × n matrix A such that each column is Ai = [1, ai, a

2
i , ...., a

n−1
i ]′. Denote

n×1 vector b to be [fX(a1)−fY (a1), fX(a2)−fY (a2), ...., fX(an)−fY (an)]′. From the information
we are given, we can write the following condition

Ab = 0,

where 0 is a n× 1 zero vector. Using the knowledge we learned from linear algebra or Econ 6170,
we can show that A is nonsingular. Therefore, the only solution to the linear equation system is

b = 0.

Then we claim that X and Y follow identical distribution, since fX(x) = fY (x) ∀x on the support
of X and Y .

10


