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Chapter 7 Convergences and Limit Theorems

1. Suppose X1, X2, ... is an uncorrelated sequence with E(Xi) = µ, var(Xi) = σ2
i , and

limn→∞Σn
i=1σ

2
i /i

2 = 0. Show X̄n converges to µ in quadratic mean.

Solution:

By definition we need to calculate E(X̄n − µ)2 and check if it converges to 0 as n→∞.

E(X̄n − µ)2 = E

[
1

n

n∑
i=1

(Xi − µ)

]2

=
1

n2

n∑
i=1

V ar(Xi)

=

n∑
i=1

σ2
i

n2

≤
n∑
i=1

σ2
i

i2

→ 0 as n→∞.

Thus, we have showed X̄n converges to µ in quadratic mean.

2. Suppose (X1, ..., Xn) is an IID random sample from the N(0, σ2) population, where 0 <

σ2 <∞. Define the sample mean Zn = n−1
∑n

i=1Xi.

(1) Find the sampling distribution distribution Fn(z) of Zn for each n ≥ 1;

(2) Find the limiting distribution of Zn as n→∞;

(3) Is the limiting distribution of Zn the same as limn→∞Fn(z)? Explain.

(4) Find the limiting distribution of
√
nZn as n→∞.

Solution:

Given Zn is the sample mean, we have

(1) for each finite n ≥ 1, Zn is the mean of the sum of n independent normal random

variables, then by reproductive property of normal distribution, we have

n ∗ Zn ∼ N(0, nσ2).

Thus, we have Zn ∼ N(0, σ
2

n ) for any n ≥ 1.

(2) As n → ∞,we have the variance of Zn converges to 0. Then we have the limiting

distribution of Zn become degenerate at point 0, which is the population mean. Then the

limiting distribution of Zn is given by FZ(z):

FZ(z) =

{
0, if z < 0

1, if z ≥ 0
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(3) First, write down the CDF of Zn:

FZn(z) =

∫ z

−∞

√
n√

2πσ2
e−

u2×n
2σ2 du

=

∫ z
√
n

−∞

1√
2πσ2

e−
v2

2σ2 dv,

where the last equality comes from change of variable. Then we know as n→∞,

FZn(z) =


0, if z < 0

1/2, if z = 0

1, if z > 0

The limiting distribution of Zn is not the same as limn→∞FZn(z). See page 21 in lecture note

7 for explanation.

(4) Since Zn ∼ N(0, σ
2

n ), we know
√
nZn ∼ N(0, σ2). There is no sample parameter in the

CDF function of
√
nZn, we expect the limiting distribution doesn’t change with the sample

size, and it still follows a normal distribution with mean 0 and variance σ2.

3. Suppose (X1, ..., Xn) is an IID random sample from the uniform distribution U [θ, 1], where

θ < 1. Define an estimator for θ as Zn = min1≤i≤nXi.

(1) Show that Zn is consistent for θ as n→∞;

(2) Find the limiting distribution of n(Zn − θ) as n→∞.
Solution:

(1) To show Zn is consistent for θ, we just need to show that Zn converges to θ in probability.

For all ε > 0, we need

lim
n→∞

P (|Zn − θ| > ε) = 0

By definition of Zn, the above probability can be written as

P (Zn > θ + ε)

= P (Zi > θ + ε) for all i

=
n∏
i=1

P (Zi > θ + ε)

=

n∏
i=1

(
1− θ − ε

1− θ
)

=

(
1− θ − ε

1− θ

)n
→ 0 as n→∞
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(2) To find the limiting distribution of n(Zn − θ), let’s work on its CDF:

P (n(Zn − θ) ≤ z)

= P (Zn − θ ≤
z

n
)

= P (Zn ≤
z

n
+ θ)

= 1− P (Zn >
z

n
+ θ)

= 1−
(

1− θ − z
n

1− θ

)n
= 1−

(
1− z

n(1− θ)

)n
→ 1− e−z/(1−θ)

Thus we know n(Zn − θ) converges in distribution to an exponential distribution with rate

parameter to be 1− θ.

4. Suppose a sequence of random variables {Zn} is defined as

Zn
1
n n

PZn 1− 1
n

1
n

(1) Does Zn converge in mean square to 0? Give your reasoning clearly;

(2) Does Zn converge in probability to 0? Give your reasoning clearly;

(3) Does Zn converge almost surely to 0? Give your reasoning clearly.

Solution:

(1) No. See Example 7.17 on page 376 of textbook .

(2) Yes. See Example 7.17 on page 376 of textbook .

(3) Not necessarily. Since we don’t know the probability measure of the basic outcomes

that maps Zn to n. Compare this to the two examples discussed in the section.

5. Define Xn = Yn+Zn, where {Yn} is an IID sequence from a N(0, 1) population, {Zn} follows

the sequence of distributions stated Exercise #4, and Xn and Yn are mutually independent.

(1) Find the limiting distribution of Xn. Show your reasoning;

(2) The limiting distribution is also called the asymptotic distribution, and the mean and

variance of the asymptotic distribution are called the asymptotic mean and asymptotic variance

respectively. Find limn→∞E(Xn) and limn→∞var(Xn). Are they the same as the asymptotic

mean and asymptotic variance respectively? Show your reasoning.

Solution:

(1) Given Yn is IID normal random variable and the index n has no impact on the limiting

distribution of Yn. We know as n → ∞, Yn → N(0, 1). While for Zn, we have shown that

Zn
p→ 0. Then by Slutsky’s Theorem, we have Xn = Yn + Zn

d→ N(0, 1).
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(2) From part (1), we have shown that the limiting distribution of Xn is N(0, 1), then its

asymptotic mean is 0 and asymptotic variance is 1. Let’s compare them to limn→∞E(Xn) and

limn→∞var(Xn).

E(Xn) = E(Yn) + E(Zn)

= 0 +
1

n
× (1− 1

n
) + n× 1

n

= 1 +
1

n
− 1

n2

Then we know limn→∞E(Xn) = 1.

var(Xn) = var(Yn) + E(Zn)

= 1 +
1

n2
× (1− 1

n
) + n2 × 1

n

= 1 +
1

n2
− 1

n3
+ n

Then we know limn→∞var(Xn) =∞.

Apparently, the asymptotic mean and asymptotic variance are different from limn→∞E(Xn)

and limn→∞var(Xn).

6. Let the sample space S be the closed interval [0,1] with the uniform probability distribution.

Define Z(s) = s for all s ∈ [0, 1]. Also, for n = 1, 2, ..., define a sequence of random variables

Zn(s) =

{
s+ sn if s ∈ [0, 1− n−1]

s+ 1 if s ∈ (1− n−1, 1].

(1) Does Zn converge in quadratic mean to Z?

(2) Does Zn converge in probability to Z?

(3) Does Zn converge almost surely to Z?

Solution:

See Example 7.21 on page 381 of textbook.

7. Suppose g(·) is a real-valued continuous function, and {Zn, n = 1, 2, ...} is a sequence

of real-valued random variables which converges in probability to random variable Z. Show

g(Zn)→p g(Z).

Solution:

See Lemma 7.5 on page 376 of textbook.

8. Suppose g(·) is a real-valued continuous function, and {Zn, n = 1, 2, ...} is a sequence of

real-valued random variables which converges almost surely to random variable Z as n→∞.
Show g(Zn)→a.s. g(Z).
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Solution:

See Lemma 7.7 on page 384 of textbook.

9. Let Z1, Z2, ... be a sequence of random variables that converges in probability to a constant

a. Assume that P (Zn > 0) = 1 for all n.

(1) Verify that the sequences defined by Yn =
√
Zn and Xn = a/Zn converge in probability

respectively.

(2) Use the results in part (a) to prove that σ/Sn convergences in probability to 1, assuming

that S2
n converges to σ2 in probability.

Solution:

(1) First we show that Yn =
√
Zn converges to

√
a in probability. Let g(·) =

√
·. Then we

can see that g(·) is continuous. Then following the result in question 7, we immediately have

the result that Yn
p→
√
a.

Next, we show that Xn = a/Zn converges to 1 in probability. For any ε > 0,

P (|a/Zn − 1| < ε)

= P (1− ε < a/Zn < 1 + ε)

= P (
a

1 + ε
< Zn <

a

1− ε
)

= P (
a

1 + ε
− a < Zn − a <

a

1− ε
− a)

= P (
−aε
1 + ε

< Zn − a <
aε

1− ε
)

≥ P (
−aε
1 + ε

< Zn − a <
aε

1 + ε
)

= P (|Zn − a| <
aε

1 + ε
)

→ 1 as n→∞

Given Zn
p→ a, then we know for any η > 0, we can find a δ > 0 an N > 0 such that for all

n > N , P (|Zn − a| > η) < δ. The last equality is achieves by letting η = aε
1+ε . Thus we have

a/Zn
p→ 1.

(2) Let a = σ, Zn = S2
n, by S2

n
p→ σ2, we have Sn =

√
S2
n

p→ σ. And σ/Sn
p→ 1.

10. [Delta Method ] Suppose
√
n(X̄n − µ)/σ

d→ N(0, 1) as n→∞, and function g(·) is contin-

uously differentiable with g′(µ) 6= 0. Then show that as n→∞,

√
n
[
g(X̄n)− g(µ)

] d→ N(0, σ2[g′(µ)]2)

and equivalently, √
n
[
g(X̄n)− g(µ)

]
σg′(µ)

d→ N(0, 1).

Solution:

See Lemma 7.11 on page 404 of textbook.
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11. Suppose that {Z1, · · ·, Zn} is an IID N(0, 1) random sample. What is the limiting distri-

bution of (
∑n

i=1 Z
2
i − n)/

√
n? Give your reasoning clearly.

Solution:

Easy to see that {Z2
i } follow IID χ2

1. Then by CLT,
∑n
i=1 Z

2
i −E(

∑n
i=1 Z

2
i )√

var(
∑n
i=1 Z

2
i ))

d→ N(0, 1). There-

fore,
∑n
i=1 Z

2
i −n√

2n

d→ N(0, 1). Then
∑n
i=1 Z

2
i −n√

2n

d→ N(0, 2).

12. Suppose Xn is an IID random sample from a population with E(Xi) = µ, var(Xi) =

σ2, E[(Xi − µ)4] = µ4. Define S2
n = (n− 1)−1

∑n
i=1(Xi − X̄n)2.

(1) Show that S2
n

p→ σ2 as n→∞;

(2) Derive the limiting distribution of
√
n(S2

n − σ2) as n→∞.
Give your reasoning.

Solution:

(1)

E(S2
n − σ2)2 = var(S2

n)

=
1

n

[
µ4 −

n− 3

n− 1
(σ2)2

]
→ 0 as n→∞

for the last equality above, see Section Notes 8 for details. Since
q.m.→ implies

p→, the result

follows.

(2) CLT shows that S2
n−E(S2

n)√
var(S2

n)
=

√
n(S2

n−σ2)√
µ4−n−3

n−1
σ4

d→ N(0, 1). Therefore,
√
n(S2

n − σ2)
d→

N(0, µ4 − σ4).

Note: part (2) is questionable since the CLT here is note Lindeberg-Levy’s since the se-

quence is not IID in S2
n.

13. Suppose
√
n(X̄n − µ)/σ

d→ N(0, 1), where −∞ < µ < ∞ and 0 < σ < ∞. Find a

nondegenerate limiting distribution of a suitably normalized version of the following statistics:

(1) Yn = e−X̄n ;

(2) Yn = X̄2
n, where µ = 0 in this case.

Give your reasoning.

Solution:

(1) Let g(x) = e−x. Clearly g′(µ) = −e−µ 6= 0. Then by (1st order) Delta Method,√
n[Yn−e−µ]
−σe−µ

d→ N(0, 1).

(2) Let g(x) = x2. Clearly g′(µ) = 2µ = 0, but g”(µ) = 2 6= 0. Therefore, we can use

Second Order Delta Method to get n[Yn−µ2]
σ2

d→ χ2
1.
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