PROF HONG

Probability and Statistics for Economists Chapter 7 Convergences and Limit Theorems

1. Suppose X_{1}, X_{2}, \ldots is an uncorrelated sequence with $E\left(X_{i}\right)=\mu, \operatorname{var}\left(X_{i}\right)=\sigma_{i}^{2}$, and $\lim _{n \rightarrow \infty} \Sigma_{i=1}^{n} \sigma_{i}^{2} / i^{2}=0$. Show \bar{X}_{n} converges to μ in quadratic mean.

Solution:

By definition we need to calculate $E\left(\bar{X}_{n}-\mu\right)^{2}$ and check if it converges to 0 as $n \rightarrow \infty$.

$$
\begin{aligned}
E\left(\bar{X}_{n}-\mu\right)^{2} & =E\left[\frac{1}{n} \sum_{i=1}^{n}\left(X_{i}-\mu\right)\right]^{2} \\
& =\frac{1}{n^{2}} \sum_{i=1}^{n} \operatorname{Var}\left(X_{i}\right) \\
& =\sum_{i=1}^{n} \frac{\sigma_{i}^{2}}{n^{2}} \\
& \leq \sum_{i=1}^{n} \frac{\sigma_{i}^{2}}{i^{2}} \\
& \rightarrow 0 \text { as } n \rightarrow \infty .
\end{aligned}
$$

Thus, we have showed \bar{X}_{n} converges to μ in quadratic mean.
2. Suppose $\left(X_{1}, \ldots, X_{n}\right)$ is an IID random sample from the $N\left(0, \sigma^{2}\right)$ population, where $0<$ $\sigma^{2}<\infty$. Define the sample mean $Z_{n}=n^{-1} \sum_{i=1}^{n} X_{i}$.
(1) Find the sampling distribution distribution $F_{n}(z)$ of Z_{n} for each $n \geq 1$;
(2) Find the limiting distribution of Z_{n} as $n \rightarrow \infty$;
(3) Is the limiting distribution of Z_{n} the same as $\lim _{n \rightarrow \infty} F_{n}(z)$? Explain.
(4) Find the limiting distribution of $\sqrt{n} Z_{n}$ as $n \rightarrow \infty$.

Solution:

Given Z_{n} is the sample mean, we have
(1) for each finite $n \geq 1, Z_{n}$ is the mean of the sum of n independent normal random variables, then by reproductive property of normal distribution, we have

$$
n * Z_{n} \sim N\left(0, n \sigma^{2}\right) .
$$

Thus, we have $Z_{n} \sim N\left(0, \frac{\sigma^{2}}{n}\right)$ for any $n \geq 1$.
(2) As $n \rightarrow \infty$,we have the variance of Z_{n} converges to 0 . Then we have the limiting distribution of Z_{n} become degenerate at point 0 , which is the population mean. Then the limiting distribution of Z_{n} is given by $F_{Z}(z)$:

$$
F_{Z}(z)=\left\{\begin{array}{l}
0, \text { if } z<0 \\
1, \text { if } z \geq 0
\end{array}\right.
$$

(3) First, write down the $C D F$ of Z_{n} :

$$
\begin{aligned}
F_{Z_{n}}(z) & =\int_{-\infty}^{z} \frac{\sqrt{n}}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{u^{2} \times n}{2 \sigma^{2}}} d u \\
& =\int_{-\infty}^{z \sqrt{n}} \frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{v^{2}}{2 \sigma^{2}}} d v,
\end{aligned}
$$

where the last equality comes from change of variable. Then we know as $n \rightarrow \infty$,

$$
F_{Z_{n}}(z)=\left\{\begin{array}{c}
0, \text { if } z<0 \\
1 / 2, \text { if } z=0 \\
1, \text { if } z>0
\end{array}\right.
$$

The limiting distribution of Z_{n} is not the same as $\lim _{n \rightarrow \infty} F_{Z_{n}}(z)$. See page 21 in lecture note 7 for explanation.
(4) Since $Z_{n} \sim N\left(0, \frac{\sigma^{2}}{n}\right)$, we know $\sqrt{n} Z_{n} \sim N\left(0, \sigma^{2}\right)$. There is no sample parameter in the CDF function of $\sqrt{n} Z_{n}$, we expect the limiting distribution doesn't change with the sample size, and it still follows a normal distribution with mean 0 and variance σ^{2}.
3. Suppose (X_{1}, \ldots, X_{n}) is an IID random sample from the uniform distribution $U[\theta, 1]$, where $\theta<1$. Define an estimator for θ as $Z_{n}=\min _{1 \leq i \leq n} X_{i}$.
(1) Show that Z_{n} is consistent for θ as $n \rightarrow \infty$;
(2) Find the limiting distribution of $n\left(Z_{n}-\theta\right)$ as $n \rightarrow \infty$.

Solution:

(1) To show Z_{n} is consistent for θ, we just need to show that Z_{n} converges to θ in probability. For all $\varepsilon>0$, we need

$$
\lim _{n \rightarrow \infty} P\left(\left|Z_{n}-\theta\right|>\varepsilon\right)=0
$$

By definition of Z_{n}, the above probability can be written as

$$
\begin{aligned}
& P\left(Z_{n}>\theta+\varepsilon\right) \\
= & P\left(Z_{i}>\theta+\varepsilon\right) \quad \text { for all } i \\
= & \prod_{i=1}^{n} P\left(Z_{i}>\theta+\varepsilon\right) \\
= & \prod_{i=1}^{n}\left(\frac{1-\theta-\varepsilon}{1-\theta}\right) \\
= & \left(\frac{1-\theta-\varepsilon}{1-\theta}\right)^{n} \\
\rightarrow & 0 \text { as } n \rightarrow \infty
\end{aligned}
$$

(2) To find the limiting distribution of $n\left(Z_{n}-\theta\right)$, let's work on its CDF:

$$
\begin{aligned}
& P\left(n\left(Z_{n}-\theta\right) \leq z\right) \\
= & P\left(Z_{n}-\theta \leq \frac{z}{n}\right) \\
= & P\left(Z_{n} \leq \frac{z}{n}+\theta\right) \\
= & 1-P\left(Z_{n}>\frac{z}{n}+\theta\right) \\
= & 1-\left(\frac{1-\theta-\frac{z}{n}}{1-\theta}\right)^{n} \\
= & 1-\left(1-\frac{z}{n(1-\theta)}\right)^{n} \\
\rightarrow & 1-e^{-z /(1-\theta)}
\end{aligned}
$$

Thus we know $n\left(Z_{n}-\theta\right)$ converges in distribution to an exponential distribution with rate parameter to be $1-\theta$.
4. Suppose a sequence of random variables $\left\{Z_{n}\right\}$ is defined as

$$
\begin{array}{ccc}
Z_{n} & \frac{1}{n} & n \\
P_{Z_{n}} & 1-\frac{1}{n} & \frac{1}{n}
\end{array}
$$

(1) Does Z_{n} converge in mean square to 0 ? Give your reasoning clearly;
(2) Does Z_{n} converge in probability to 0 ? Give your reasoning clearly;
(3) Does Z_{n} converge almost surely to 0 ? Give your reasoning clearly.

Solution:

(1) No. See Example 7.17 on page 376 of textbook .
(2) Yes. See Example 7.17 on page 376 of textbook .
(3) Not necessarily. Since we don't know the probability measure of the basic outcomes that maps Z_{n} to n. Compare this to the two examples discussed in the section.
5. Define $X_{n}=Y_{n}+Z_{n}$, where $\left\{Y_{n}\right\}$ is an IID sequence from a $N(0,1)$ population, $\left\{Z_{n}\right\}$ follows the sequence of distributions stated Exercise $\# 4$, and X_{n} and Y_{n} are mutually independent.
(1) Find the limiting distribution of X_{n}. Show your reasoning;
(2) The limiting distribution is also called the asymptotic distribution, and the mean and variance of the asymptotic distribution are called the asymptotic mean and asymptotic variance respectively. Find $\lim _{n \rightarrow \infty} E\left(X_{n}\right)$ and $\lim _{n \rightarrow \infty} \operatorname{var}\left(X_{n}\right)$. Are they the same as the asymptotic mean and asymptotic variance respectively? Show your reasoning.

Solution:

(1) Given Y_{n} is IID normal random variable and the index n has no impact on the limiting distribution of Y_{n}. We know as $n \rightarrow \infty, Y_{n} \rightarrow N(0,1)$. While for Z_{n}, we have shown that $Z_{n} \xrightarrow{p} 0$. Then by Slutsky's Theorem, we have $X_{n}=Y_{n}+Z_{n} \xrightarrow{d} N(0,1)$.
(2) From part (1), we have shown that the limiting distribution of X_{n} is $N(0,1)$, then its asymptotic mean is 0 and asymptotic variance is 1 . Let's compare them to $\lim _{n \rightarrow \infty} E\left(X_{n}\right)$ and $\lim _{n \rightarrow \infty} \operatorname{var}\left(X_{n}\right)$.

$$
\begin{aligned}
E\left(X_{n}\right) & =E\left(Y_{n}\right)+E\left(Z_{n}\right) \\
& =0+\frac{1}{n} \times\left(1-\frac{1}{n}\right)+n \times \frac{1}{n} \\
& =1+\frac{1}{n}-\frac{1}{n^{2}}
\end{aligned}
$$

Then we know $\lim _{n \rightarrow \infty} E\left(X_{n}\right)=1$.

$$
\begin{aligned}
\operatorname{var}\left(X_{n}\right) & =\operatorname{var}\left(Y_{n}\right)+E\left(Z_{n}\right) \\
& =1+\frac{1}{n^{2}} \times\left(1-\frac{1}{n}\right)+n^{2} \times \frac{1}{n} \\
& =1+\frac{1}{n^{2}}-\frac{1}{n^{3}}+n
\end{aligned}
$$

Then we know $\lim _{n \rightarrow \infty} \operatorname{var}\left(X_{n}\right)=\infty$.
Apparently, the asymptotic mean and asymptotic variance are different from $\lim _{n \rightarrow \infty} E\left(X_{n}\right)$ and $\lim _{n \rightarrow \infty} \operatorname{var}\left(X_{n}\right)$.
6. Let the sample space S be the closed interval $[0,1]$ with the uniform probability distribution. Define $Z(s)=s$ for all $s \in[0,1]$. Also, for $n=1,2, \ldots$, define a sequence of random variables

$$
Z_{n}(s)= \begin{cases}s+s^{n} & \text { if } s \in\left[0,1-n^{-1}\right] \\ s+1 & \text { if } s \in\left(1-n^{-1}, 1\right]\end{cases}
$$

(1) Does Z_{n} converge in quadratic mean to Z ?
(2) Does Z_{n} converge in probability to Z ?
(3) Does Z_{n} converge almost surely to Z ?

Solution:

See Example 7.21 on page 381 of textbook.
7. Suppose $g(\cdot)$ is a real-valued continuous function, and $\left\{Z_{n}, n=1,2, \ldots\right\}$ is a sequence of real-valued random variables which converges in probability to random variable Z. Show $g\left(Z_{n}\right) \rightarrow^{p} g(Z)$.

Solution:

See Lemma 7.5 on page 376 of textbook.
8. Suppose $g(\cdot)$ is a real-valued continuous function, and $\left\{Z_{n}, n=1,2, \ldots\right\}$ is a sequence of real-valued random variables which converges almost surely to random variable Z as $n \rightarrow \infty$. Show $g\left(Z_{n}\right) \rightarrow^{a . s .} g(Z)$.

Solution:

See Lemma 7.7 on page 384 of textbook.
9. Let Z_{1}, Z_{2}, \ldots be a sequence of random variables that converges in probability to a constant a. Assume that $P\left(Z_{n}>0\right)=1$ for all n.
(1) Verify that the sequences defined by $Y_{n}=\sqrt{Z_{n}}$ and $X_{n}=a / Z_{n}$ converge in probability respectively.
(2) Use the results in part (a) to prove that σ / S_{n} convergences in probability to 1 , assuming that S_{n}^{2} converges to σ^{2} in probability.

Solution:

(1) First we show that $Y_{n}=\sqrt{Z_{n}}$ converges to \sqrt{a} in probability. Let $g(\cdot)=\sqrt{\cdot}$. Then we can see that $g(\cdot)$ is continuous. Then following the result in question 7 , we immediately have the result that $Y_{n} \xrightarrow{p} \sqrt{a}$.
Next, we show that $X_{n}=a / Z_{n}$ converges to 1 in probability. For any $\varepsilon>0$,

$$
\begin{aligned}
& P\left(\left|a / Z_{n}-1\right|<\varepsilon\right) \\
= & P\left(1-\varepsilon<a / Z_{n}<1+\varepsilon\right) \\
= & P\left(\frac{a}{1+\varepsilon}<Z_{n}<\frac{a}{1-\varepsilon}\right) \\
= & P\left(\frac{a}{1+\varepsilon}-a<Z_{n}-a<\frac{a}{1-\varepsilon}-a\right) \\
= & P\left(\frac{-a \varepsilon}{1+\varepsilon}<Z_{n}-a<\frac{a \varepsilon}{1-\varepsilon}\right) \\
\geq & P\left(\frac{-a \varepsilon}{1+\varepsilon}<Z_{n}-a<\frac{a \varepsilon}{1+\varepsilon}\right) \\
= & P\left(\left|Z_{n}-a\right|<\frac{a \varepsilon}{1+\varepsilon}\right) \\
\rightarrow & 1 \text { as } n \rightarrow \infty
\end{aligned}
$$

Given $Z_{n} \xrightarrow{p} a$, then we know for any $\eta>0$, we can find a $\delta>0$ an $N>0$ such that for all $n>N, P\left(\left|Z_{n}-a\right|>\eta\right)<\delta$. The last equality is achieves by letting $\eta=\frac{a \varepsilon}{1+\varepsilon}$. Thus we have $a / Z_{n} \xrightarrow{p} 1$.
(2) Let $a=\sigma, Z_{n}=S_{n}^{2}$, by $S_{n}^{2} \xrightarrow{p} \sigma^{2}$, we have $S_{n}=\sqrt{S_{n}^{2}} \xrightarrow{p} \sigma$. And $\sigma / S_{n} \xrightarrow{p} 1$.
10. [Delta Method] Suppose $\sqrt{n}\left(\bar{X}_{n}-\mu\right) / \sigma \xrightarrow{d} N(0,1)$ as $n \rightarrow \infty$, and function $g(\cdot)$ is continuously differentiable with $g^{\prime}(\mu) \neq 0$. Then show that as $n \rightarrow \infty$,

$$
\sqrt{n}\left[g\left(\bar{X}_{n}\right)-g(\mu)\right] \xrightarrow{d} N\left(0, \sigma^{2}\left[g^{\prime}(\mu)\right]^{2}\right)
$$

and equivalently,

$$
\frac{\sqrt{n}\left[g\left(\bar{X}_{n}\right)-g(\mu)\right]}{\sigma g^{\prime}(\mu)} \stackrel{d}{\rightarrow} N(0,1) .
$$

Solution:

See Lemma 7.11 on page 404 of textbook.
11. Suppose that $\left\{Z_{1}, \cdots, Z_{n}\right\}$ is an IID $N(0,1)$ random sample. What is the limiting distribution of $\left(\sum_{i=1}^{n} Z_{i}^{2}-n\right) / \sqrt{n}$? Give your reasoning clearly.

Solution:

Easy to see that $\left\{Z_{i}^{2}\right\}$ follow IID χ_{1}^{2}. Then by CLT, $\frac{\sum_{i=1}^{n} Z_{i}^{2}-E\left(\sum_{i=1}^{n} Z_{i}^{2}\right)}{\sqrt{\left.\operatorname{var}\left(\sum_{i=1}^{n} Z_{i}^{2}\right)\right)}} \xrightarrow{d} N(0,1)$. Therefore, $\frac{\sum_{i=1}^{n} Z_{i}^{2}-n}{\sqrt{2 n}} \xrightarrow{d} N(0,1)$. Then $\frac{\sum_{i=1}^{n} Z_{i}^{2}-n}{\sqrt{2 n}} \xrightarrow{d} N(0,2)$.
12. Suppose \mathbf{X}^{n} is an IID random sample from a population with $E\left(X_{i}\right)=\mu$, $\operatorname{var}\left(X_{i}\right)=$ $\sigma^{2}, E\left[\left(X_{i}-\mu\right)^{4}\right]=\mu_{4}$. Define $S_{n}^{2}=(n-1)^{-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}_{n}\right)^{2}$.
(1) Show that $S_{n}^{2} \xrightarrow{p} \sigma^{2}$ as $n \rightarrow \infty$;
(2) Derive the limiting distribution of $\sqrt{n}\left(S_{n}^{2}-\sigma^{2}\right)$ as $n \rightarrow \infty$.

Give your reasoning.

Solution:

(1)

$$
\begin{aligned}
E\left(S_{n}^{2}-\sigma^{2}\right)^{2} & =\operatorname{var}\left(S_{n}^{2}\right) \\
& =\frac{1}{n}\left[\mu_{4}-\frac{n-3}{n-1}\left(\sigma^{2}\right)^{2}\right] \\
& \rightarrow 0 \text { as } n \rightarrow \infty
\end{aligned}
$$

for the last equality above, see Section Notes 8 for details. Since $\xrightarrow{q . m}$ implies \xrightarrow{p}, the result follows.
(2) CLT shows that $\frac{S_{n}^{2}-E\left(S_{n}^{2}\right)}{\sqrt{\operatorname{var}\left(S_{n}^{2}\right)}}=\frac{\sqrt{n}\left(S_{n}^{2}-\sigma^{2}\right)}{\sqrt{\mu_{4}-\frac{n-3}{n-1} \sigma^{4}}} \xrightarrow{d} N(0,1) . \quad$ Therefore, $\sqrt{n}\left(S_{n}^{2}-\sigma^{2}\right) \xrightarrow{d}$ $N\left(0, \mu_{4}-\sigma^{4}\right)$.

Note: part (2) is questionable since the CLT here is note Lindeberg-Levy's since the sequence is not IID in S_{n}^{2}.
13. Suppose $\sqrt{n}\left(\bar{X}_{n}-\mu\right) / \sigma \xrightarrow{d} N(0,1)$, where $-\infty<\mu<\infty$ and $0<\sigma<\infty$. Find a nondegenerate limiting distribution of a suitably normalized version of the following statistics:
(1) $Y_{n}=e^{-\bar{X}_{n}}$;
(2) $Y_{n}=\bar{X}_{n}^{2}$, where $\mu=0$ in this case.

Give your reasoning.

Solution:

(1) Let $g(x)=e^{-x}$. Clearly $g^{\prime}(\mu)=-e^{-\mu} \neq 0$. Then by (1st order) Delta Method, $\frac{\sqrt{n}\left[Y_{n}-e^{-\mu}\right]}{-\sigma e^{-\mu}} \xrightarrow{d} N(0,1)$.
(2) Let $g(x)=x^{2}$. Clearly $g^{\prime}(\mu)=2 \mu=0$, but $g^{\prime \prime}(\mu)=2 \neq 0$. Therefore, we can use Second Order Delta Method to get $\frac{n\left[Y_{n}-\mu^{2}\right]}{\sigma^{2}} \xrightarrow{d} \chi_{1}^{2}$.

