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Introduction to Sampling Theory Population and Random Sample

Population and Random Sample

e Statistical analysis is based on outcomes of a large
number of repeated random experiments of same or
similar kind.

e Suppose a random variable X; denotes the outcome of
the -th experiment. We then obtain a sequence of out-
comes, X1, -, X,, if n experiments are implemented.

e This sequence of outcomes then constitutes a so-called
random sample from which one can make inference
of the underlying probability law which has generated
the observed data.
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Introduction to Sampling Theory Population and Random Sample

Population and Random Sample

Definition 1 (6.1). [Random Sample]

A random sample, denoted as X" = (X, -+, X,,), is a sequence
of n random variables X1, - -, X,,.

A realization of the random sample X", denoted as x" =
(z1,:+,x,),is called a data set generated from X" or a sample
point of X™.

A random sample X" can generate many different data sets.
The collection of all possible sample points of X" constitutes
the sample space of the random sample X".
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Introduction to Sampling Theory Population and Random Sample

Population and Random Sample

Example 1 (6.1). [Throwing n Coins]

Let X, denote the outcome of throwing the i-th coin, with
X; = 1 if the head shows up, and X; = 0 if the tail shows up.
Then X" = (Xq,- -+, X,,)’ constitutes a random sample.

If we throw n coins, we will obtain a sequence of real numbers,
such as

x" = (1,1,0,0,1,0,- - -, 1).

This sequence is a data set of size n from the random sample
X",
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Introduction to Sampling Theory Population and Random Sample

Population and Random Sample

Example 1 (6.1). [Throwing n Coins]

Obviously, if we throw the n coins again, we will get a different
sequence, such as

x" =1(1,0,0,1,1,1,---,0).
This is another data set from the random sample X".

Apparently, the random sample X" can generate a total of 2"
different data sets, each with size n.
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Introduction to Sampling Theory Population and Random Sample

Population and Random Sample

Example 2 (6.2). [Chinese GDP Annual Growth

Let X, denote the Chinese GDP growth rate in year 7, from
1953 to 2019. Then X" = (X, -+, X,,)’ constitutes a random
sample with sample size n = 68. The observed data x" =
(z1,- -, xy,)", depicted in Figure 6.1, is a realization of X".

Chinese GDP growth rate (1953-2019)

30.00%
20.00%
10.00%
0.00%
-10.00%
-20.00%

-30.00%
1954 1959 1964 1969 1974 1979 1984 1989 1994 1999 2004 2009 2014 2019

Introduction to Sampling Theory Introduction to Statistics and Econometrics April 16, 2020 71167



Introduction to Sampling Theory Population and Random Sample

Population and Random Sample

Example 3 (6.3). [S&P 500 price index]

Let X; be the return on S&P500 price index at day ¢, from
January 4, 1960 to December 31, 2010. Then X" = (X4, -
-, X,,) forms a random sample with size n = 12839.

The observed data set x" = (x1,- -+, x,), depicted in Figure
6.2, is a realization of the random sample X".
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Introduction to Sampling Theory Population and Random Sample

Population and Random Sample

e While in theory a random sample X" could generate
many different data sets x", each with size n, one may
only observe or obtain one data set x" in practice. This
is the case with Examples 6.2 and 6.3 which are called
time series data.

e For example, if we would like to obtain another data set
for the Chinese GDP growth rate, we would have to let
the Chinese economy repeat again back from 1953, and
this is simply impossible due to the non-experimental
nature of a real economy.
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Population and Random Sample

e In statistical analysis, we still assume that the only ob-
served data in Example 6.2 or Example 6.3 is one of
many possible realizations from the random sample X".

e For some random samples, the order of the random vari-
ables X1, ---, X,, in the sample, together with their real-
izations, may not be altered freely.

e An example is the time series random sample of Ex-
amples 6.2, where the random variables Xy, - - -, X, are
not jointly independent, and the behavior of X; may de-
pend on the previous outcomes {X; 1, X;_o,---}. Such a
dynamic structure could not be preserved if one altered
the order of random variables and their realizations.

Introduction to Sampling Theory Introduction to Statistics and Econometrics April 16, 2020 10/167



Introduction to Sampling Theory Population and Random Sample

Population and Random Sample

e A random sample X" can be viewed as a n-dimensional
random vector, namely, X" : S — R", where S is the sample
space of the underlying random experiment.

e The information of a random sample X" is completely described
by the joint PMF /PDF of the n random variables,

T
fxn (x") = H fxixi- (i|x"1),
i=1
where, by convention, fy,xo(z1]z”) = fx, (1) is the marginal

PMF /PDF of random variable Xj.

e The joint PMF/PDF can be used to calculate probabilities in-
volving the random sample X".
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Introduction to Sampling Theory Population and Random Sample

Population and Random Sample

e The above definition of a random sample covers both indepen-
dent samples and time series samples:

— For the former, X4, - -, X,, in the sample are jointly inde-
pendent;

— For the latter, Xy, - -, X,, in the sample are not jointly
independent.
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Introduction to Sampling Theory Population and Random Sample

Population and Random Sample

Definition 2 (6.2). [IID Random Sample]

The sequence { X, -, X,,} is called an independent and iden-
tically distributed (IID) random sample of size n from the
population distribution Fx(z) if:

(1) random variables X1, - - -, X,, are mutually independent;

(2) each random variable X; has the same marginal distribu-
tion Fx (x).
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Introduction to Sampling Theory Population and Random Sample

Population and Random Sample

? Question: What is the interpretation and implication of an
2 JID random sample?

e Suppose we have a random experiment in which the vari-
able of interest X has a probability distribution F'x(z).

e Suppose the random experiment is repeated n times.
Then we observe n outcomes for the variable of inter-
est, denoted as x"™ = (z1, - -, ).
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Introduction to Sampling Theory Population and Random Sample

Population and Random Sample

9 Question: What is the interpretation and implication of an
2 JID random sample?

e If we denote X, as the variable of interest associated
with the i-th experiment, then X, has the probability
distribution F'x(x) and x; can be viewed as a realization
of X i

e Identical distribution for the X; means repeated ex-
periments of same kind, and independence means
that experiments are implemented independently so that
new information can be obtained from each experiment.
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Introduction to Sampling Theory Population and Random Sample

Population and Random Sample

e The main purpose of statistical analysis is to infer
population distribution F'x (x) based on an observed
data set generated from a large number of repeated ex-
periments of the same kind.
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Population and Random Sample

? Question: How to define the population if the random vari-
®  ables X, -, X,, in the sample are not identically distributed?

e The random wvariables X, - -, X,, in a random sample
may not have identical probability distributions, due to
the existence of heterogeneity among economic agents
or structural changes of economic relationships over
time.

e Although each X, has a different distribution, we may
assume that they may still share certain common fea-
tures (e.g., common parameter values) in their proba-
bility distributions, and these common features of distri-
butions can be defined as the population.
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Introduction to Sampling Theory Population and Random Sample

Population and Random Sample

e Inference of population based on a random sample is
the most important feature of statistical analysis.

? Question:

-
— What are the requirements on the random sample?

— What is the best inference method given a random sam-
ple?

— What should be done if the random sample have certain
drawbacks (e.g., sample selection bias, missing data, out-
liers, etc)?
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Population and Random Sample

? Question: How to summarize useful information in a data

B get x"? What is a tool to do so?
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Introduction to Sampling Theory Population and Random Sample

Population and Random Sample

Definition 3 (6.3). [Statistic]

Let X" = (X4, -+, X,,) be a random sample of size n from a
population.

A statistic T(X") =T(X,- -+, X,) is a real-valued or vector-
valued function of a random sample X".
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Introduction to Sampling Theory Population and Random Sample

Population and Random Sample

e The function T'(-) is a mapping from the n-dimensional
sample space of X" to a low-dimensional Euclidean
space.

e A statistic 7(X") does not involve any unknown
parameter. It is entirely a function of random sample
X", Given any data set x", we can obtain a real-valued
number or vector for the statistic 7(X™).
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Introduction to Sampling Theory Population and Random Sample

Population and Random Sample

e A statistic T'(X"™) can be used to effectively summa-
rize some features of data (e.g., maximum and mini-
mum values, median, mean, standard deviation, etc), to
estimate unknown parameters, to conduct hypoth-
esis testing, etc.

e Interpretability of statistics is very important!
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Introduction to Sampling Theory Population and Random Sample

Population and Random Sample

Example 4 (6.4)

Let X" = (X4, -+, X},) be a random sample. Then the sample

mean .
Xn — ?’1_1 Z Xz

1=1

and the sample variance
T

Sy =(n—1)"" Z(Xi - X,)?
i=1
are two statistics.

Introduction to Sampling Theory Introduction to Statistics and Econometrics April 16, 2020 23/167



Introduction to Sampling Theory Population and Random Sample

Population and Random Sample

Question: X, and S;f‘ can be used to estimate puyxy and (72\

. o . . - ¥ ~9

of the population distribution Fx(z). Why are X,, and S?
) bb, . p 2 L ‘
"good” estimators of pux and o% respectively”

e We will develop various concepts to measure the close-
ness of an estimator to the parameter of interest in Chap-
ters 7 and 8.
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Introduction to Sampling Theory Population and Random Sample

Population and Random Sample

Example 5 (6.5)

Let X™ = (Xq,- -+, X,) be an IID random sample from the
population f(x,#), where 0 is some unknown parameter. Then
the logarithm of the joint PMF/PDF of X"

L(0|X™) In ][ £(x:,0)

Z In f(X;,6)

is called the log-likelihood tunction of #, conditional on the
random sample X".
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Introduction to Sampling Theory Population and Random Sample

Population and Random Sample

Example 5 (6.5)

Remarks

L(0|X™) depends on the random sample X", but it is
not a statistic, because it is a function of the unknown
parameter 6.
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Introduction to Sampling Theory Population and Random Sample

Population and Random Sample

Definition 4 (6.4). [Sampling Distribution]

The probability distribution of a statistic T'(X") is called the
sampling distribution of T'(X").

Remarks
e Since T'(X™) is a function of n random variables, T(X")
itself is a low-diemensional random vector.

e The distribution of T(X") is called the sampling dis-
tribution because this distribution can be derived from
the joint distribution of the variables X, - -, X, in the
random sample.
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Introduction to Sampling Theory Population and Random Sample

Population and Random Sample

e The sampling distribution of 7'(X") is different from the population
distribution F'x (x). The latter is the marginal distribution of each X;
in an IID random sample X".

e The sampling distribution of a statistic T'(X") plays a vital role in
statistical inference. For example, it is needed to obtain critical values
when constructing a confidence interval estimator and a hypothesis
test statistic.

e T (X"™) can be viewed as a partition of the sample space of X". A
random sample X" can generate many data sets x", each of which is
called a sample point in the sample space of X". Let

be the collection of all sample points x™ that satisfy the restriction
T'(x™) = t. Then a single value of T'(x™) = ¢ summarizes all sample
points in A(t) which give the same value for T'(x").
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Sampling Distribution of Sample Mean

Definition 5 (6.5). [Sample Mean]

Suppose X" = (X7, -+, X,,) is a random sample from a pop-
ulation with mean p and variance o?. Then

B 1 n
T(X") =Xy =~ Z;X

is the sample mean for the random sample X".
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Introduction to Sampling Theory Sampling Distribution of Sample Mean

Sampling Distribution of Sample Mean

e The distribution of X, is called the sampling distribution
of X,,.

e When one has only a single observed sample (i.e., data
set) x™, the sample mean z,, does not appear random.
However, if we realize that the observed sample x™ is
only one of many possible samples that could have been
drawn and each sample has a different sample mean, we
can then see that the sample mean is in fact random.
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Sampling Distribution of Sample Mean

Theorem 1 (6.1)

Suppose X" is a random sample. Then

(!

_— _ Y
X, = arg _min ZI(XE a)”.
—
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Sampling Distribution of Sample Mean

e The objective function Y . ,(X; — a)? is called the sum of
squared residuals.

e The sample mean X,, is essentially the Ordinary Least Squares
(OLS) estimator for a very simple linear regression model

X; =a+ ¢,

where {e;} is an IID sequence with E(g;) = 0 and var(g;) = o°.
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Introduction to Sampling Theory Sampling Distribution of Sample Mean

Sampling Distribution of Sample Mean

e We shall investigate the following statistical properties
of X,,:

— What is the mean of X,,7
— What is the variance of X,,7

— What is the sampling distribution of X,,7
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Sampling Distribution of Sample Mean

Theorem 2 (6.2)

Suppose X1, -+, X,, are a sequence of n identically dis-
tributed random variables with the same population
mean . Then for all n > 1,

E(Xn) = M-

_ 1 &
Proof: E(Xn) = ;ZE(X%‘)
1=1

1 TL

T -

\ 1=1 /
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Sampling Distribution of Sample Mean

e This result does not require that the random variables
X1, -, X, be mutually independent.

e F(X,) = p implies that the sample mean estimator X,,
does not make a systematic mistake in estimating the
population mean p. That is, for any given n, if one gen-
erates a large number of data sets x", each of which gives
a value Z,, for X,,, then the average of these sample mean
values will be arbitrarily close to pu.
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Sampling Distribution of Sample Mean

Theorem 3 (6.3)

Suppose X" is an IID random sample from a population
with mean g and variance o?. Then for all n > 1,

0.2

var(X,) = —.
n

 Proof
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Sampling Distribution of Sample Mean

Proof:

e When X and Y are mutually independent, we have

var(a +bX +cY) = b%c% + c?oy + 2bc - cov(X,Y)

2 2 2 2
= box +coy.

e Similarly, for an IID random sample X", we have

TL
var(X,) = var Zn_lX@
i=1
TL
— Z n_gvar(Xi)
i=1
52
T n
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Sampling Distribution of Sample Mean

e The variance 02 /n of X,, is different from the population
variance o2 of each random variable X.

e var(X,,) = 0?/n implies that the dispersion of X,, from

its center F(X,,) shrinks to zero as n — oo.

e Since F(X,) = u, we have the mean squared error of X,

var(X,,)
52

— — 0 as n — oc.
n

E(X, — H)Q
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Sampling Distribution of Sample Mean

Example 6 (6.6). [Idiosyncratic Risk Elimination via Diversification]

According to the standard capital asset pricing model (CAPM), the
return of asset ¢ over certain holding period is given as:

R; = a+ BiRy, + &4,

where « is a constant representing the return on the risk-free asset,
R, is the market risk factor common to all individual assets, [3; is
a factor loading coeflicient, and &; represents an idiosyncratic risk
associated with asset 7. It is further assumed that the sequence of
(€1, -+, €yn) is IID with mean 0 and variance o2, and is uncorrelated
with the market risk factor R,,. The risk of asset 7, as measured by
its variance, is given by

2 2
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Sampling Distribution of Sample Mean

Example 6 (6.6). [Idiosyncratic Risk Elimination via Diversification]

where 3?var(R,,) is a systematic risk which cannot be avoided, and
o® is the idiosyncratic risk which can be eliminated by forming a
portfolio with a large number of assets.

To see this, consider the return on an equal-weighting portfolio with

n assets:

gl
3
|l

"1

= -+ BﬂRm + €n,
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Sampling Distribution of Sample Mean

Example 6 (6.6). [Idiosyncratic Risk Elimination via Diversification]

where the average beta 3, = n™! 2?21 Bi — B # 0 as n — oo, and
En = n X" g is the sample mean of the individual risk sample
(e1,---,&pn). It follows that

_ _ o?
V&I'(Rn) — fﬂﬁVﬂr(an) + T

n
—  B%var(R,,) as n — 0.

Thus, the idiosyncratic risks associated with individual assets can be

eliminated by including a very large number n of assets contained in
the portfolio.
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Sampling Distribution of Sample Mean

Theorem 4 (6.4)

Suppose X" = (X1, -+, X,,) is an IID normally distributed random
sample with population mean p and population variance o* < oc.
Define the standardized sample mean

Xﬂ - E }_{n
7 - (_ )
\/V&I‘(Xn)
XTL — M

oIV
V(X —p)

a

Then
2o~ N(O.1) for all n > 1. ~ Proof
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Sampling Distribution of Sample Mean

e Put ¥; = (X, — pu)/o. Then Y; ~ N(0,1) and has MGF
PrOOf: My, (t) = e for all i.
e Now consider the MGF of Z,, =n /23" | V;:

Mgz, (t) = E(e“)

l T
e E (Etﬂ' 22 Y-'-‘)
T N
— E | If.'t”' 2%
i=1
, 14

f— EE
It follows that Z;,, ~ N(0,1) for all n = 1.
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Sampling Distribution of Sample Mean

e The sum of n independent normal random variables is
still a normal variable. This is called the reproductive
property of the normal distribution.

e When the random sample X" is not from a normal pop-
ulation, X,, and Z, no longer follow a normal distri-
bution. For example, in Example 6.1, nX,, follows a
Binomial(n, p) distribution for any given n.
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Sampling Distribution of Sample Variance

e Recall the variance formula

o2 = E(X; — )2,

9 one plausible estimator for o2 might be the sample average
» n
—1 2
Question: " ;(X": —
How to estimate
ol — V‘dl‘(X,;)? e Since p is unknown, we shall replace 4 with the sample mean

X,, and the average of (X; — X,,)? :

1 — _ .
- (X:i. - Xn)z*
T i—1

e In fact, we will use the sample variance estimator

1 T B
n—1 Z(X’-‘? _ X”)Z'
' i=1
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Sampling Distribution of Sample Variance

?

g Question: Why dividing by n — 17

e What is the mean of S27
e What is the variance of S27

e What is the sampling distribution of S?2?
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Sampling Distribution of Sample Variance

Theorem 5 (6.5)

Suppose X" = (Xy,---, X,,) is an IID random sample from a popu-

lation with (u,0?). Then for all n > 1,

E(Sﬁ) = o2,

 Proof
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Sampling Distribution of Sample Variance

Proof:

e Using the formula (a — b)? = a* — 2ab + b*, we have

i

Z(Xz - Xn)z
i=1

= Z[(Xz — j_L) - (X-n, o Ju‘)]z

_ Z(X’*"-_‘“ —ZZ(X—;;)(XH—H)+Z

=1 =1 =1

T _Ju*

- Z(X.‘, - ,uf)g - 2(—)2?!- o .u:') Z(Xi o ,{L) + ﬂ(jn o H)E
: i=1
= Z(Xi — ) =2n(X, — u)* +n(X, —pn)*
i=1
= > (Xi—p)?—n(X,—p)?
i=1 To be Continued
/
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Sampling Distribution of Sample Variance

Proof: where we have used the fact

T

Z(X;: — ) =n(X, — pn).

i=1

Taking the expectations for both sides, we have

EZ(X" N X'”')E - Z E(X; — I” - T'}’E[(}‘_{H - “_}2]

i=1 i=1
2
J} U L
= no’—n.-— = (n—1)c2,
n

where we have used the fact that F(X,, — pu)? = o?/n.

e It follows that

E(S?) = E - D (X — X))
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Sampling Distribution of Sample Variance

e [t is important to assume independence among the n

random variables Xy, ..., X, here, because we have used
the fact that E(X,, — u)? = o2 /n.

e The reason of using n — 1 instead of n is to ensure that

S? is unbiased for 0.
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Sampling Distribution of Sample Variance

Lemma 1 (6.6). [ -Distribution]

Let Zy,---, Z, be IID N(0, 1) random variables, where v is a positive

integer. Then
D7~ X

1=1

 Proof
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Sampling Distribution of Sample Variance

PrOOf: e When Z; ~ N(0,1), we have Z? ~ x%, whose MGF

Mya(t) = (1 —2t)"%.

e Put X = XY

v Z?. Then given the independence among

1, Ly, We hame
Mx(t) = E(e™=2t)
— (1 —2t)7 3.

e It follows that X ~ x2 by the uniqueness of the NIGF
This is called the reproductive property of the x?
distribution.
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Sampling Distribution of Sample Variance

e The 2 distribution has

E(Xf,) — v

and
var (XE) = 2v.
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Sampling Distribution of Sample Variance

Theorem 7 (6.7). [ -Distribution]

Suppose X" = (X1, -+, X,,) is an IID N (z, 0%) random sample. Then
for each n > 1,

(n—1)S3 > i1 (Xi — Xn)?

1=

o2 a2

2
~ Xﬂ,—l?

where 2 _; is a Chi-square distribution with n—1 degrees of freedom.

 Proof
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Sampling Distribution of Sample Variance

Proof: e [t is straightforward to establish the recursive relation

n—1

(n — 1)53 = (n — 2)5‘3_1 + (X — Xn—l)g*

T

We shall show the theorem by induction:

e (1) We first consider n = 2, the minimum interger for
S2. We have

(2 1)83 1 :
A
- (%5
V20
~ Xi
because (X2 — X1)/V20 ~ N(0,1).
To be Continued
/
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Sampling Distribution of Sample Variance

Proof:

e (2) Next, suppose for n = v, an arbitrary positive integer
with v > 1, we have (v —1)52%/0% ~ x2_,. Then we shall

show that for n = v+ 1, vS;, /0% ~ x3.

e For n = v + 1, we have

USE+1 (L"’— I)SE L’ — 9
o2 * (L’ -+ 1)(]'2 (XIJ+1 N XIJ) '

o? o2

— We now consider the second term. Since X, ~
N(p,0%), X, ~ N(p, £0?), and X, 41 and X, are
independent, we have

2
X, — X, ~N (0, o2 + J—)

L

To be Continued
——
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Sampling Distribution of Sample Variance

Proof:

or equivalently

_\/(y ;1)52 (Xys1 — X)) ~ N(0, 1),

Hence, 25 (X, 11 — X,,)?/0? ~ x3.

— Suppose this term is independent of SZ. Then, given
(v —1)S?%/0? ~ x?_, and the fact that the sum of
two independent y? random variables follow a y?
distribution, we have vS7_ /o ~ xi.

— The theorem will thus be proved provided the fol-
lowing result is shown:
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Sampling Distribution of Sample Variance

Theorem 8 (6.8)

Suppose X" is an IID N (p, o?) random sample. Then for any n > 1,
S2 and X,, are mutually independent.
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Sampling Distribution of Sample Variance

Lemma 2 (6.9)

Let X; ~ IID N(u,0?),i=1,--- ,n. For constants a;;, and b,;, define

T

U, = E a;; X, 1=1,---,v,
=1
TL

VT' — E brjX_,r: T:11"' ) 170,
7=1

where v +m < n. Then

(1) For each pair (i,7), the random variables U; and V,. are independent
if and only if cov(U;, V,.) = 0.

(2) The random vectors (Uy,---,U,) and (V4,- -, V,,) are independent
if and only if U; is independent of V, for all pairs (i,r), where i =
1, v,r=1,---,m.
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Sampling Distribution of Sample Variance

e The U, random variables and the V, random variables
follow a joint normal distribution.

e Under the joint normal distribution, the U; random vari-
ables and the V,. random variables are independent if and
only of their covariances are zero for all pairs of 7, r.
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Sampling Distribution of Sample Variance

ﬁroof of Theorem 6.8: \

e Note that S2 = (n—1)"1 Z:” 1(X —X,,)? is a function of
n random variables (X7 — X ), (X, — X,,). It suffices
to show that X,, and (X, —X,,, -, Xn—)_(n) are mutually
independent.

e We ap_ply Lemma 6.9. Put U; = X,, — pu, and V, =
X, —X,,r=1,---,n. We first show that U; and V). are

mutually independent for all » =1, - -, n.

\ To be Continued}
—
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Sampling Distribution of Sample Variance

ﬁroof of Theorem 6.8: \

e Because for any given r = 1, - - -, n, we have

cov(U1,V,) = FEUV,)

= E[(X,— (X, —w)] - E (X, —p)°

o o2

T (i

= 0.

It follows from Lemma 6.9(1) that U; and V. are inde-
pendent. We have immediately from Lemma 6.9(2) that

U; and (Vq,---,V,) are mutually independent.
\ To be Continued

e
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Sampling Distribution of Sample Variance

Proof of Theorem 6.8:

e Now, put g(U;) = Uy + p, and h(Vy,-- -, V,) = (n —
1)=t5 " V2 Then g(U;) and h(Vy,- Vn) are inde-
pendent, i.e. X,, and S? are independent.
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Sampling Distribution of Sample Variance

mother Heuristic Proof of Theorem 6.8: \

o Let X = (Xq,---,X,,) beanx1vector,i=(1,---,1)" be
a n X 1 vector of ones, and I be a n X n identity matrix,
where A’ denotes the transpose of a vector or matrix A.

e Define a n X n matrix

M=1I- lii".

T

Note that M2 = M and M = M. Then we have

T?,Xn = ir}c;j
(n—1)8? = (MX)'(MX)

\ - X'M'X To be Continued
O be Lontlnue
~ X'MX. sl
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Sampling Distribution of Sample Variance

Another Heuristic Proof of Theorem 6.8:

e To show that X, and S? are independent, it suffices to
show the random variable i’X and the n x 1 random
vector MX are independent.

i'X
7 = (ax )

_ (;\/I)x

= AX, say,

e Put

where A is a (n + 1) X n matrix.

To be Continued
——
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Sampling Distribution of Sample Variance

Another Heuristic Proof of Theorem 6.8:

— Because Z is a linear combination of X, and X ~ N(0, 0°I)
is a vector of I1ID normal random variables, Z follows a
multivariate normal distribution.

— Furthermore, the variance-covariance matrix between 1'X
and MX

cov(i’X, MX)

E{[iX — E('X)] [MX — BE(MX)]'}
= FE{i'[X-EX)]X-EX)]'M}
VE{[X - EX)][X - EX)]'}M

= i0’IM
= o%i'M
= 0
given M = 0. To be Con’cln/ued
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Sampling Distribution of Sample Variance

Another Heuristic Proof of Theorem 6.8:

e Since i’X and MX follow a joint normal distribution,
and they are uncorrelated, it follows that i’X and MX
are mutually independent.
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Sampling Distribution of Sample Variance

e Theorem 6.7 states that when {X;}" , is IID N(u,0?), (n —
1)S2 /0% ~ x%_,, where n — 1 is called the degrees of freedom.
This is a concept associated with sums of squares.

e The random sample X" = (X4, - -, X,,) are n linearly inde-
pendent observations, we now use them to estimate o2. If we
knew p, an estimator for o® would be n=* > " (X; — p)=.

e Unfortunately we usually do not know the population mean /.
Therefore, we have to replace it with the sample mean X,, and
use the estimator S2 = (n —1)71 >0 (X; — X,,)%
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Sampling Distribution of Sample Variance

e Here, we have actually used the n actual observations (X; —
Xn,- -, X, — X,). These n observations are subject to one

restriction
T

> (X —X,) =0

i=1
Thus, given the n — 1 observations, we can always obtain the
remaining one from the above restriction. In this sense, in esti-
mating 5?2, we lose one degree of freedom in the original sample
due to the restriction. The sum of squares >, (X; — X,,)? has
only n — 1 degrees of freedom.
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Sampling Distribution of Sample Variance

e More generally, the number of degrees of freedom associated
with a sum of squares is given by the number of observations
used to compute the sum of squares minus the number of un-
known parameters that have to be replaced by their sample
estimates. The number of parameters replaced is equal to the
number of restrictions placed on data used to form the sum of
squares.
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Sampling Distribution of Sample Variance

Theorem 10 (6.10)

Suppose X" = (X1,--+, X,,) is an IID N(u, 0?) random sample. Then

for all n > 1,
20%

n— 1

var(S?7) =

 Proof
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Sampling Distribution of Sample Variance

Proof:

e Because f
(n —1)S7 2
~ Xn—1-

a2

and the variance of x2 ;| is 2(n — 1), we have

—1)S82
Var[m 1)S2

G’z

}:mn—n.

or

6-4

[(” — 1)2] -var(S2) = 2(n — 1).

Therefore, var(S2) = 204 /(n — 1).
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Sampling Distribution of Sample Variance

o var(S?) =20%/(n —1) and E(S?) = ¢? imply

MSE(S?) = E(S: —0%)°
var(S?)
204

n—1

s ) as n — o0.

Introduction to Sampling Theory Introduction to Statistics and Econometrics April 16, 2020 75/167



6.1 Population and Random Sample
6.2 Sampling Distribution of Sample Mean
6.3 Sampling Distribution of Sample Variance

6.4 Student’s t-Distribution J
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6.6 Sufficient Statistics

6.7 Conclusion
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Student’s t-Distribution

Definition 6 (6.6).[Student’s t-Distribution]
Let U ~ N(0,1),V ~ x?, and U and V are independent. Then the random

variable

VX2V

follows a Student’s t distribution with v degrees of freedom, denoted as
T~ tl’“ 0.40

degrees of fresdom « 1 0.35f
L4

0.30}
0.25}
§o.2o-
0.15}
0.10}
0.05}
SRS T DR B J : : Y ——— A = 0.0

-4 -2 0 2 4 -4 2 0 2 3
X X
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Student’s t-Distribution

e The PDF of a Student’s ¢, distribution is

L)y 1 1
fr(t) = F(v) (y,ﬂ.)l/Q (1_|_t2/1;)(b’+1)/2’

]

— o0 <t < .

3|

e This could be obtained by first finding the PDF frr(t,r) of the
bivariate transformation

T = U/VV/v,

R = U,

and then integrating out R.
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Student’s t-Distribution

Lemma 3 (6.11).[Properties of the Student t,, Distribution]

(1) The PDF of t,, is symmetric about 0.

(2) t, has a heavier distributional tail than N(0,1) (see Figure 6.5
below).

(3) Only the first ¥ —1 moments exist. In particular, the mean p = 0,
and the variance 0* = v/(v — 2) when v > 2. The MGF does not

exist for any given v.
(4) When v = 1, t; ~ Cauchy (0.,1).

(5) t, — N(0,1) as v — .

Introduction to Sampling Theory Introduction to Statistics and Econometrics April 16, 2020 79/167



Introduction to Sampling Theory Student’s t-Distribution

Student’s t-Distribution

e The convergence of £, to N(0,1) can be seen from the limit

, 2T 1 L 1
o frt) = JE;@\/;TE)J% A+ /)17 Var v T+ 2] P2
1 142
— e 27

v — 00,

e

ﬂ

=~

— ™

bI|% (b
'—L
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Student’s t-Distribution

e The Student t-distribution has classical importance in statisti-
cal inference:

— When X" is an IID N (u, 0?) random sample, we have for
all n > 1,

Xn — 1
o/\/n

— However, since ¢ is unknown, we have to replace o with
an estimator, usually the sample standard deviation .S,,.

~ N(0,1).

— Thus, the theory that follows leads to the exact distribu-
tion of

X, —

S/
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Student’s t-Distribution

Theorem 12 (6.12)

Let X" = (Xq, -+, X,) be an IID random sample from a N (u,c?)
distribution. Then for all n > 1, the standardized sample mean

— Xn—p
Xn — M _ a/vn
S’n/\/ﬁ (n—1)S2
7 =/(n—1)
N(0,1)
\/X?a—1/(” —1)
~ th_1

where ,,_1 is the Student t-distribution with n—1 degrees of freedom.

 Proof g
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Student’s t-Distribution

ﬁroof:

e Put U = (X,, — pn)/(c//n), and V =

independent.

e [t follows that

X — (X0, — )/ (o/\/1)
Sn//1 V(n—1)S2/[02(n — 1)]

~ ln—1.

\_

(n — 1)S7/0>.
Then U ~ N(0,1) and V ~ x2_,. Also, X,, and S? are

~

/
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Student’s t-Distribution

Example 7 (6.7).[Confidence Interval Estimation for Population Mean u]

Suppose X" = (X1, -+, X,,) is an IID random sample from a N (u, 0?)
population, where both 1 and 02 are unknown. We are interested in
constructing a confidence interval estimator for p at the (1 —a)100%

confidence level.

Solution 2
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Student’s t-Distribution

e Given a € (0,1), a (1 — a)100%-confidence interval es-
timator for p is defined an random interval [ﬁ, U] such
that

P(ﬁ<u<ﬁ) =1- a.

e To construct an interval estimator for ;1 when o2 is un-

known, we define the upper-tailed critical value C;, |

of a Student’s t,,_; distribution by
To be Con’cinued>
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Student’s t-Distribution

e By Theorem 6.12 and the symmetry of the Student-t distribution, we

have

or equivalently,

e This yields a (1 —«)100% confidence interval estimator for  when o

1S unknown:

; S’J"L 7 S'H.-
P (X ~5Ci g <p< Xnt —ncgn_h%) —1-a.

To be Continued
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Student’s t-Distribution

e The random interval estimator

— Sﬂ — S-]-]_.
X, — —=C = X, e
$o - s Kot

2

is computable when ¢“ is unknown.

e Note that the sampling distribution of

Xn—

Sn/Vn

plays a crucial role of determining the critical value C; _ ./, and
thus the confidence interval estimator.
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Student’s t-Distribution

Example 8 (6.8).[Hypothesis Testing on Population Mean: The t-test]

Suppose there is an IID N (u, 0?) random sample X" = (X, -+, X,,)
of size n, and we are interested in testing the hypothesis

Ho : p = po,

where o is a given (known) constant (e.g., uo = 0). How can we test
this hypothesis?

Solution 2
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Student’s t-Distribution

e To test the hypothesis Hy : 4 = pg, we consider the
statistic

Xy — HO — (Xn — pﬂ) + (lu’ - ﬂﬂ)

— When Hy : p = pg, we have

Xp—po =X, —pu—>0asn— o0

in terms of mean squared error. Therefore, X,, — g
will be close to zero as n — o0.

To be Continued
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Student’s t-Distribution

— On the other hand, if Hy is false, i.e. p # po, then

Xo—po = (Xo—p)+(p—po)
—  pu—po#0asn — o0

in terms of mean squared error. Therefore, a test
for Hjy can be based on the statistic X,, — ug :

(1) If X,, — j1o is sufficiently small, then Hy is true;

(2) Otherwise if X,, — jto is sufficiently large in ab-
solute value, then Hy is false.
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Student’s t-Distribution

How far away X,, — po is from zero will be considered as “suf-

ficiently large” in absolute value?

-

.
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Student’s t-Distribution

e This is described by the sampling distribution of X,, — 0. From
the sampling distribution of X,, — o, we can find a threshold
value called critical value to judge whether X, — ji is signif-
icantly large.

— Suppose X" ~ IID N (1, 0?). Then for each positive integer

n,
2
XH—MNN(O?J—).
n

It follows that

To be Con’cinued>
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Student’s t-Distribution

X, —po = (Xpn—p)+(u—po)

2
~ N (0, U—) .
T

Therefore, the standardized random variable

Xp—po  Xp—p  /nlp— po)

To be Con’cinued>

a/\/n o/\/n o
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Student’s t-Distribution

When the hypothesis Hg holds,

Xﬂ — Ho
o/\/n

which implies that (X,, — po)/(0/+/n) will take small and
finite values with very high probability.

N(0, 1),

To be Continued
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Student’s t-Distribution

— On the other hand, when Hj is false,

Xﬂ,_ﬁﬂ
> OO as n — oo

YN

with high probability. Therefore, we can test Hy by ex-
amining whether (X,, — ug)/(c/y/n) is large in absolute
value.

To be Continued
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Student’s t-Distribution

e However, the quantity

X-n — HO

o/\n

is not a feasible statistic, because it involves the unknown pa-
rameter . We have to replace o with an estimator for o, say
the sample standard deviation S,,. This leads use to consider

the following feasible t-test statistic T'(X"™) = %

To be Continued

Introduction to Sampling Theory Introduction to Statistics and Econometrics April 16, 2020 96/167




Introduction to Sampling Theory Student’s t-Distribution

Student’s t-Distribution

e However, the distribution of 7(X") is no longer N(0,1); in-
stead it becomes a Student t-distribution with n — 1 degrees of
freedom:

— Under Hy : 1 = po,
T(X™) ~ tn_1

for all n > 1. This follows because under Hy : u = ug

To be Con’cinued>
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Student’s t-Distribution

oy T

?ﬂ-/ﬁ

X n — M

S'ﬂ:/\/H

~  tlp—1.

Thus, with very high probability, the {-test statistic T'(X")
will take small and finite values.

— On the other hand, when Hy : p = po is false, i.e, when
1L # 1o, we have

Xn—p (e — po)

N
—_— OO

T(X") =

as . — oo with high probability.
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Student’s t-Distribution

Decision Rule for the T-test Using Critical Values:

e Reject the hypothesis Hy : p = po at the prespecified
significance level a € (0,1) if

T(X")| > C

[
n—1:91

where C, ..
Student t,,

2 is the upper-tailed critical value of the
distribution at level %, determined by P(t,_1 >

e Accept the hypothesis Hy at the significance level a if
T(X")| < Cy

Ql
n—1s%5
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Student’s t-Distribution

e In testing Hj using an observed data generated from the random
sample X" of size n, there exist two type of errors:

e One possibility is that Hy is true but we reject it. This is
possible because the test statistic T'(X") follows a Student ¢,,_1
distribution under H, which has an unbounded support. Thus,
there exists a small probability that T'(X"™) can still take a
larger value than the critical value under H.This is the so-
called Type I error. The significance level a controls Type I
error. If

P UT(XH)‘ > Ofn_l,%‘H{]] — (X,

we call the decision rule a size « test or a test with size «.
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Student’s t-Distribution

e On the other hand, the probability
P [|T(XH)‘ > Ctn_l,% H is false}

is called the power function of the size-« t-test. When P|[|T(X")| >
CY o |Hl is false] < 1, there exists a possibility that one may

n—1:49
accept Hy when it is false. This is called a Type II error.

e When n is finite, due to the nature of limited information of-
fered by the random sample X", both the Type I and Type II
errors are unavoidable and there usually exists a tradeoff be-
tween them. In practice, one usually sets a level for the Type I
error and then minimizes the Type II error.
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Student’s t-Distribution

Decision Rule for the T-test Using P-Values:

e Given any observed data set X", we can compute a value (i.e.,
a realization)
Ln — HO

T =T/

for the t-test statistic T(X").

e Then the probability

p(x") = P(|T(X")| > [T(x")|Ho)
= P(ltp_1| > |T™)])

is called the P-value of the t-test statistic 7'(X") when a data
set x" 1s observed.
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Student’s t-Distribution

Decision Rule for the T-test Using P-Values:

e Interpretation of P-value: it can be viewed as the probability
that the t-test statistic 7'(X") is larger than the observed
value T'(x") when Hy holds.

e If the observed value T'(x") is large, p(x") will be small. Thus,
a small P-value is strong evidence against the null hypothesis
Hy, while a large P-value shows that the data are consistent

with H[} .
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Student’s t-Distribution

P-Values Based Decision Rule:

e Reject the hypothesis Hy at the significance level a if p(x") < a.

e Accept the hypothesis Hy at the significance level « if p(x™) >

(x.

Accept the null hypothesis if the sample

True value under the null hypothesis statistic falls in this region

and most likely observation

X |

& Acceptance
'.% 95% statistical Region — Rejection
g significance threshold /Critical Region
4
5 Observed p-value
z (statistical significance)
3 Observed ‘ a6
very unlikel ar

% Ob:yerv.ﬂonys result (value) very uniikely outco 1n:1 Common outcomes
a |i ' observations | Reject N, Retain M,

' \1 |

< > Reject the null hypothesis if the sample

set of possible results statistic falls in these two regions.
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Student’s t-Distribution

e The P-value is the smallest value of the significance level a for
which Hj can be rejected. The P-value not only tells us whether
Hp should be accepted or rejected at a given significance level,
but also tells us whether the decision to accept or reject Hy is
a close call.

e Statistical verus Economic Significance: A rejection of Hl
based on either of the above decision rules is called a statisti-
cally significant effect. From a statistical perspective, for any
deviation from Hy (i.e., any difference between p— o), no mat-
ter how small it is, a rejection decision will be made as long as
the sample size n is sufficiently large.
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Student’s t-Distribution

e However, a small difference i1 — o may not be important from
an economic perspective. For example, one may be interested
in whether the expected return (¢) on a mutual fund is prac-
tically significantly different from a pre-specified rate (pg) of
return. The size of the difference p — g should be large enough
to consider an investment on the mutual fund, due to (e.g.,)
existence of transaction costs. However, a statistic test like the
t-test introduced above will reject any nonzero small difference
1 — o as long as the sample size n is sufficiently large. In
other words, an economically insignificant eftect is likely to be
statistically significant.
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Student’s t-Distribution

Question:
Is the P-value inference a scientific approach?

9

e Data snooping?
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6.2 Sampling Distribution of Sample Mean
6.3 Sampling Distribution of Sample Variance
6.4 Student’s t-Distribution

6.5 Snedecor's F Distribution |

6.6 Sufficient Statistics

6.7 Conclusion
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Snedecor's F Distribution

Definition 7 (6.7). [The F Distribution]

Let U and V' be two independent Chi-square random variables
with p and ¢ degrees of freedom respectively. Then the random
variable

— F(11)
Fi21)

— F(52)

— F{100100)

? What is the PDF of
a I}, , distribution?

1.5 20 25 30

" =
1.0
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Snedecor's F Distribution

e The PDF is given by

F(&QQ) (p);l?f x(P/2)—1
x) = — : 0 <x <oo.
O =torg o) TF @rgaeror
e This PDF could be obtained by using the bivariate trans-
formation
Fo= (U/p)/(V/a),
G = U,

and then integrating out G.
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Snedecor's F Distribution

Lemma 4 (6.13). [Properties of £ , Distribution]

(1) If X ~ F,,, then X~ ! ~ F, ;
(2) If X ~ t,,then X? ~ F}
(3) If ¢ — oo, then p - Fpq — x}%.
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Snedecor's F Distribution

e Result (1) follows from the definition of a F' random
variable.

e For Result (2), recall that a ¢, random variable is defined

as
A

\/ Xa/4
where Z ~ N(0,1) and it is independent of x;. It follows
that )

xi/1

2 ~ ~ F,.
\_ DA TT AN -
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Snedecor's F Distribution

Example 9 (6.9) [Hypothesis Testing on Equality of Population Variances]

Let X" = (X4, -+, X,)be a random sample of size n from a
N(ux,0%) population, and Y™ = (Y1, --,Y,,) be a random
sample of size m from a N(uy,o% ) population. Assume that
X" and Y™ are independent.

Suppose we are interested in comparing Variability of the pOp-
ulation, i.e. interested in testing whether Hy : 05 = o3 holds.
Then a test statistic can be based on the sample variance ratio
SX
SE
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Snedecor's F Distribution

Since S5 — 0% as n — oo in MSE, and S2 — 0% as m — oo
in MSE, we have

CF: 0
X 52X as n,m — oo.

2 2
SY Oy

Under Hy : 05 = o3, we have
Sk _ Sx/ox
Sy Sy/oy

~ Fn—l,m—l-
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Snedecor's F Distribution

If Hy is false, and so 0% # 0%, then

2 2 2

Sx Sx/ox ~ F

82 82 /0'2 n—1,m—1
Y Y Y

Therefore, by checking whether S% /S% follows the F,, 1., 1
distribution, we can test whether the variances are equal. In
particular, if one knows that crif > J%/ under Hj, then one can
use the right-tailed critical value of Fj,_q ;1.
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Snedecor's F Distribution

e Because the F'-distribution is closely related to the ratio
of sample variances, it is sometime called the variance
ratio distribution.

e The F-test is an important testing principle in classical
statistics and econometrics, where S% and S% are gen-
eralized to the sums of squared residuals of a restricted
regression model and an unrestricted regression model
respectively:.
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Sufficient Statistics

The KISS Principle:

Keep It Sophisticatedly Simple

Suppose we are interested in making inference of parameter
using a set of data generated from a random sample X" from
a population fx(z) = f(x,0). Under what conditions, can the
information about # that is contained in the random sample
X" be completely summarized by some low-dimensional func-
tion of X", say, some statistic 7'(X"™)? 9

‘-
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Sufficient Statistics

e Suppose Person A observes a realiation x™ while Person
B only observes the value of t = T'(x"). Generally, Per-
son A knows better than Person B about the unknown
parameter value of 6.

e However, there may exist situations in which Person B
can do just as well as Person A. This occurs when the
statistic T'(X"™) summarizes all information about 6 that
is contained in X", so that individual values of x™ are
irrelevant in search for a good estimator of 6.

e A statistic T(X") that has this desired property is called
a sufficient statistic for parameter #. An important
implication of a sufficient statistic for parameter 6 is that
one can then just keep the sufficient statistic T'(X"),
which is low dimensional.
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Sufficient Statistics

e For example, suppose the random sample X" ~ IID
N(p,0%), where 6 = (u,0?). Then for inference of 6,
only the sample mean X,, and the sample variance S?
should be retained, because they are sufficient statistics
for (pu,0?).

e Sufficient statistic is an important method for data re-
duction.
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Sufficient Statistics

How can one check (X,,,S?) are sufficient for = (u,0?) for
a random sample X" from a normal population? More gen-
erally, how can one find a sufficient statistic for parameter 6
associated with a given population?
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Sufficient Statistics

Definition 8 (6.8). [Sufficient Statistic]

Let X™ be a random sample from some population with pa-
rameter €. A statistic T'(X") is a sufficient statistic for # if the
conditional distribution of the sample X" = x" given that the
value of the statistic T(X"™) = T'(x") does not depend on #;
that is,

fxnirxmy [x"|T(x"),0] = h(x™) for all possible 6,

where the left hand side is the conditional PMF /PDF of X" =
x" given T'(X™) = T'(x"), which generally depends on #. The
right hand side A(x") does not depend on #; it is a function of
X" only.
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Sufficient Statistics

e Suppose fxnpxn)x"|T(x"),0], the conditional proba-
bility of X" = x" given T'(X") = T'(x"), does not de-
pend on 6.

e Then all sample points {x"} which yield the same value
of T'(x™) = t for T'(X™), will be just equally likely for
any value of 6. In other words, since the conditional dis-
tribution of X" = x" given T(X") = T(x") does not
depend on 6, the data x™ beyond the value of T'(x") =t
does not provide any additional useful information about
6. All knowledge about 6 that can be gained from the
observed value x™ of the sample X" can just as well be
gained from the value of T'(x™) alone.
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Sufficient Statistics

Sufficient Statistic in the Discrete Case:

e [L'irst of all, sufficiency implies that the conditional PMF
Sxnrxmy (X" [T'(x"), 0]

Py[X" = x"|T(X") = T(x")]
h(x")

for all 6, where Py(-) is the probability measure under the

probability distribution of X" which is usually indexed
by 6.
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Sufficient Statistics

e The full information of a random sample X" is described
by the joint probability of X" = x™, denoted by fxn(x",0) =
P(X™ = x™). This joint probability depends on 6 in gen-
eral. For example, when X" is an IID random sample
with population PMF f(z,0). Then

T

fxn(x",0) = [ [ f(2:,0).

1=1
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Sufficient Statistics

e Because X" = x" implies T'(X") = T'(x™) but not vice
versa, we have the event A = {X" = x"} C B =
{T(X"™) =T (x™)}. Therefore, the joint PMF of the ran-
dom sample X"

fxn(x".0) = P(X"=x")
= P(4)
— P(ANB)
= P(A[B)P(B)
= PX"=x"|T(X") = T(x")| P[T(X") =

h(x") frxm) [T (x"), 0]

by sufficiency, where frxn»)[T(x"),0] = P[T(X") =
T'(x")] depends on 8 but h(x™) does not depend on 6.
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Sufficient Statistics

e Only the marginal probability P|T'(X"™) = T'(x")] of the
sufficient statistic T'(X") is related to 6. Therefore, if we
are interested in making inference of ¢, then we can only
retain the information of 7'(X™).
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Sufficient Statistics

e For example, the so-called maximum likelihood estima-
tion (MLE) for 6, to be introduced in Chapter 8, is to
maximize the objective function—the log-likelihood func-
tion

In fxn»(x",0) =Inh(x") +1In frxn)|[T(x"),0].
Because the first part is irrelevant to 6, we have

arg max In fxn(x",0) = arg max In frpx»)|T(x"), 0],

where © is a parameter space. In other words, it suffices

to maximize the log-likelihood function In frxn)[T(x"), 0]
of the sufficient statistic 7'(X") for MLE of 6.
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Sufficient Statistics

How can one check if a statistic T'(X™) is sufficient

for parameter 07
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Sufficient Statistics

Theorem 10 (6.14). [Factorization Theorem]

Let fxn(x"™,0) denote the joint PDF (or PMF) of a random
sample X". A statistic T'(X") is a sufficient statistic for 6 if
and only if there exist functions ¢(¢,0) and h(x") such that
for any sample point {x"} in the sample space of X" and for
any parameter value 6 € O,

Jxn (Xﬂ& 9) — g[T(XH)j Q]h(xn),

where ¢(t,0) depends on parameter  but h(x™) does not de-
pend on parameter 6.
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Sufficient Statistics

/ broof N

We shall show only the discrete case, where fxn(x",0) =
P(X"™ =x").

e (1) [Necessity]: When T(X™) is sufficient, noting that
(X" =x"} CH{T(X™) =T(x")}, we have

{X?’L — X’Tl} — {Xﬂ — X’Tl} ﬁ {T(Xn) — T(Xﬂ)}

It follows that

k To be Continued
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Sufficient Statistics

@Hows that \

fxn(x",0) = P(X"=x")

- _P X_H. — XH‘T(XTL) — T(XTI)]P[T(X_H) — T(XTL)]
= h(x")P[T(X") =T(x")]
= h(x")g[T(x"),0

where g[T'(x"),0] = P|[T(X") = T(x")] and h(x") = P X" =
x"|T(X™) = T(x")].

k To be Continued
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Sufficient Statistics

mQ) |Sufficiency]: Now suppose we have \

fxn(x",0) = g[T'(x"), 0]h(x").

We shall show that the conditional probability P|X"
x"|T(X™) =T (x™)] does not depend on 6.

Because

\_

(X" = x"} = (X" = x"} 0 {T(X") = T(x")},

To be Continued
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Sufficient Statistics

ﬂe have \

PX" = x"|T(X")=T(x")
_ PX"=x"T(X") =T(x")]
P[T(X") = T(x")]
P(X™ =x")

P[T(X") = T(x")
g[T(x"), 6]h(x")
PIT(X") =T(x")]

\_
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Sufficient Statistics

ﬁ now consider the denominator: \

PT(X") = T(x")]
— Z fX”(yﬂrg)

{y™:T(y™)=T(x")}

= > glT(y"),0h(y")

{y™:T(y™)=T(x")}

= > g[T(x"),0h(y")

{y™:T(y™)=T(x")}

= g[T(x"),0] > h(y")
k {y"T(y™)=T(x")}

To be Continued
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Sufficient Statistics

ﬁlere the sum is taken over all possible sample points {y”m
the sample space of X" that yield the same value of T'(y") =

T'(x™). It follows that the conditional probability

PX" =x"|T(X") = T(x")]
g[T(x"),0]h(x")
P[T(X") =T(x")]
glT(x"), O]h(x")
g[T'(x"),0] Z{y“-:T(y”}:T(x”)} h(y™)
h(x™)
2ofym(ym)=Temy MY

\Which does not depend on 6. /
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Sufficient Statistics

Example 10 (6.10)

Suppose X" ~ 11D Bernoulli(f), where 0 < § < 1. Show that
the sample proportion T(X") = n='> " | X; is a sufficient
statistic for 6. Note that § = E(X;).

Solution

e The PMF of a Bernoulli(f) random variable X; is
f(x;,0) = 0" (1 — ) =,

where x,; takes value O or 1.
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Sufficient Statistics

e Suppose X" is a realization (i.e., a data set) of the ran-
dom sample X". We have

P(X" = x")=]]f(z:0)
i=1

T

= [Je -0

1=1
_ pTmami(] — )T
QHT(KH}(l _ 9)?1—?’1?"(3‘:”)

= g[T(x"),0]h(x"),

where T(X") =n~' 3" | Xj, h(x") = 1, and g[T'(x"), 0] =
Gn,i{’(x”')(l - g)n—ﬂﬂf’(x”}'
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Sufficient Statistics

Example 11 (6.11)

Let X" ~ IID N(p,0?), where o2 is a known value. Then

X,, is a sufficient statistic for pu.

show T'(X")

Solution

e In this example, the (unknown) parameter # = pu. Since
o” is a given (known) number, it is no longer a parame-

ter.

e The joint PDF of X"

To be Conti nued>
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Sufficient Statistics

Jxn (X", 1)

T
H f(ﬁia 9)
=1
- 1 (g —n)
[
2
o V2mo
1 _E?=l{$i—xn+$n—ﬂ}z
a2
(271-{}-2)?1}2 € ’
1 o E:;l:l(11*1—5?71.)24"’1‘-(:571—.”-}2
202

(2mo2)n/2 c

IR (2i—@p)?

o ’n'.l',:;ﬁ 1, — 4

252 €

1
[(27?02)”/26
h(x")g(Zn, 1),
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Sufficient Statistics

where
1 ST (25 —Fn)?
N _
M) = (2ro2)n/2° S
'”(T--J'L_PL)E
g|T(x"),0] = e = 22

It follows that T'(X") = X,, is a sufficient statistic for p.
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Sufficient Statistics

Example 12 (6.12)

Let X" ~ IID N (u, o?), where u, 0? are unknown parameters.
Then T(X") = (X,,, 5?) is a sufficient statistic for (u,o?).

Solution

e In this example, the unknown parameter 6 = (u,o?) is
a two-dimensional vector.

e Because the joint PDF of the random sample X"

To be Conti nued>
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Sufficient Statistics

X_n (Xn s Ly 0'2)

(. —j.f.:lg
— H 20‘
2mo
- ;—1(-1 F—L}Z
— [ 22
(\/2?1'{}'2)”
1 I{ﬂ_1}'[“1_1]_IET—1':“"*‘ ~¥n)? ] n(@p—pm)?
— 202 9 gl
(2?-{-0-2)7?/2
1 B {ﬂ,—l}sﬁ-m;(mn_“}z
— (QTTGQ)WQE 27
— gIT "), Oh(x"),
where h(x") = 1 for all x", it follows that the two-dimensional
statistic T'(X") (Xn,S2) is a sufficient statistic for 6

(i, 02).
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Sufficient Statistics

e For a normally distributed random sample X" with un-
known g and o2, it suffices to summarize the data by re-
porting the sample mean and sample variance, because
(X,,S2) is a sufficient statistic for (p,o?).

e However, suppose it is not normal. Then (Xm Sﬁ) may
not be sufficient statistics. In other words, a sufficient
statistic T'(X™) is generally model-dependent or popula-
tion distribution dependent.
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Sufficient Statistics

Can you provide an example of population distribution for
which (X,,, S?) are not sufficient statistics for 8 = (p,0?)?
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Sufficient Statistics

Theorem 11 (6.15). [Invariance Principle]

If T(X™) is a sufficient statistic for #, then any 1-1 function
R(X™) = r[T(X")] is also a sufficient statistic for #, and a

sufficient statistic for the transformed parameter r(6).

/Proof: \

e Because T'(X") is a sufficient statistic for 6, the joint
PMF /PDF of the random sample X"

fxn(x",0) = g|T'(x"),0)h(x")

\ for some functions g(-,-) and h(-).
To be Continued
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Sufficient Statistics

/ broof N

e Next, because the function r(-) is a 1-1 mapping, its
inverse function r~!(-) exists and T'(x") = r~[R(x")].
It follows that

fxn(x™,0) = g{r[R(x")], 0}h(x")
— GIR(X"), 0]h(x")

where g(-,0) = g[r—1(-), 0] depends on parameter 6. Hence,
R(X™) is a sufficient statistic for 6 by the definition of

\sufﬁcient statistic.
To be Continued
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Sufficient Statistics

/ broof N

e Similarly, because 6 = r~![r(0)] = r~1(3), where 8 =
r(#) is a transformed parameter, we have

fn(x7,6) = g{r ' [R")]r (B)h(x")
= g[R(x"), Blh(x"),

where the function ¢*(-, 3) = g[r~!(-),r~*(8)] depends
on parameter 3. It follows that R(X") is also a sufficient

\statistic for 3.
To be Continued
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Sufficient Statistics

Definition 9 (6.9). [Exponential Family]

A family of probability distributions is called an exponential
family if their population PMF /PDF can be expressed as

f(z,0) = h(a:)c(ﬁ)ezlle(ﬂ)ti (@),

e Most important distributions introduced in Chapter 4—
both discrete and continuous—belong to the exponential
family.
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Sufficient Statistics

e An example is the normal N (u,0?) distribution, whose

PDF
f(.’l':.. 9) — LE—#(I—HJE
' V2o
_ 1 Srses
V2To
where ;
h(z) = 1, wo(f) = #,
1 2 .
c(f) = —e_ﬁ}?, t(z) = a7,
1 to(z) = a
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Sufficient Statistics

Theorem 12 (6.16).

Let X" = (X1, --,X,) be an IID random sample from the
population f(x,#). If

f(,0) = h(z)c(f)eZi=1s @) @)

then the k£ x 1 statistic vector

o= [t o]

is a sufficient statistic for 6.

[Proof: This is left as an exercise. ]
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Sufficient Statistics

e It is always true that the random sample X" itself is a
sufficient statistic for 6.

This is because we can always partition the joint PMF/PDF
of X" as

fxn (X", 0) = g[T(x"), 0]h(x"),
where T'(x") = x", h(x") = 1, and g|T'(x"), 0] = fx=(x",6)

for all x™. By the factorization theorem, 7'(X") = X" is
always a sufficient statistic.
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Sufficient Statistics

There may exist many sufficient statistics for the same param-
eter f. Sufficient statistics for # may differ from each other in
the degree of summarizing the sample information. What is
the most efficient way to summarize information of # that is
contained in a random sample X"?
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Sufficient Statistics

Definition 10 (6.10). [Minimal Sufficient Statistic]

A sufficient statistic T'(X") is called a minimal sufficient statis-
tic for parameter 6 if, for any other sufficient statistic R(X"),the
statistic T(X") is a function of R(X"). That is, for any suf-
ficient statistic R(X"), there always exists some function r(-)
such that T(X") = r[R(X")].

e All sufficient statistics of # contain all sample informa-
tion that is relevant to #, but the minimal sufficient
statistic achieves the greatest possible summary of the
data among all sufficient statistics for parameter 8. Why?
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Sufficient Statistics

e Suppose T'(X") = r[R(X")], and t = r(7). Define two
subsets of sample points in the sample space of X":

A, (1) = {x":R(x")=r1},
Bn(t) = {x":T(x") =1}
= {x" :r[R(x")] =r(1)].

The first subset A,,(t) is indexed by t and the second
subset B, (7) is indexed by 7, where t = r(7). Then
A, (1) C By(t).
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Sufficient Statistics

e Therefore, the sample information summarized by T'(x") =
t is a larger set than the sample information summarized
by R(x") = 7. This implies that 7'(X") summarizes the
larger information of the random sample X™ for param-
eter 6.

e A minimal sufficient statistic is not unique. Any 1-1
function of a minimal sufficient statistic is also a minimal
sufficient statistic.

? How can one find a minimal sufficient statistic?
®
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Sufficient Statistics

Theorem 13 (6.17).

Let fxn(x",#) be the PMF /PDF of a random sample X". Sup-
pose there exists a function 7'(X"™) such that, for two sample
points X" and y"™ in the sample space of X", the ratio of joint
PMF/PDF fxn»(x™,0)/fxn(y™,0) is constant as a function of
0 (i.e. is independent of 0) if and only if T'(x™) = T'(y™). Then
T'(X™) is a minimal sufficient statistic for parameter 6.

-

Proof: A

e (1) First we shall show that 7'(X") is a sufficient statistic
for & under the stated condition.

\_ To be Continued}
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Sufficient Statistics

oot ™

e Define the partition sets of the sample space of X™ in-
duced by T(x") = t for a given ¢t as A(t) = {x" :
T(x"™) = t}. For each A(t), we choose and fix one el-
ement x}' € A(t). In other words, for any sample point
x" with T'(x") = t, let X" be a fixed element that is in
the same set A(t) as x".

e Since x" and x}' are in the same set A(t), we have
T(x") = T(x?) and hence, fx» (x",8)/ fx (x}',8) is con-
stant as a function of € given the condition in the theo-
rem. Thus, we can define a function hA(x") = fx~(x",0)/ fx=(x}',0),

\vhich does not depend on f and is a function of x™ only.

To be Continued
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Sufficient Statistics

Sufficient Statistics

have

ﬁroof:
e Also,

define a function ¢(t,0) = fx~(x},0). Then we\

an (Xﬂj 9)
fX” (X?, 6)

fxn (x",0)

fxn (x,0)

fxn (%, 0)h(x")

g(t, 0)h(x

")

g[T(x"), 0]h(x"),

where the last equality follows from ¢t = T'(

x"). Thus, by

the factorization theorem, T'(X™) is a sufficient statistic

for 6.
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Sufficient Statistics

ﬁroof: \
e (2) Now we shall show that T(X") is minimal. Let

T(X™) be any other sufficient statistic for #. By the
factorization theorem, there exist functions g(-,-) and

h(-) such that fxn»(x™,0) = g[T(x"),0]h(x™).

e Let x" and y" be any two sample points in the sample

space of X" with T'(x") = T'(y"). Then

fx'”’ (Xﬂﬂ 9)
fxn(y™,0)

t

Nt
N~

=t Qu
P Famm®
<
3
fn——
= (=
=
< | ™
=
e

~~
"

=

—

\Whi(}h does not deped on 6. To be Continued

Introduction to Sampling Theory Introduction to Statistics and Econometrics April 16, 2020 161/167

o}
o~
<

)
R




Introduction to Sampling Theory Sufficient Statistics

Sufficient Statistics

/ Proo: N

e Since the ratio fx«(x™,0)/fx~(y",0) does not depend
on 6, the conditions of the present theorem imply 7T'(x") =
T(y™). In other words, we have T(x") = T(y") implies
T(x") =T(y™). This means that for any given x",

{y": Tly") = T(x")} < {y" : T(y") = T(x")}
kThus, T'(x™) is minimal. /
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Sufficient Statistics

Example 13 (6.13)

Let X" be an IID random sample from a N(ju,0?) popula-
tion with both p and ¢? unknown. Let x™ and y” denote
two sample points in the sample space of X", and let (7,,, s% )
and (7, s3) be the sample means and ‘sample variances cor-
responding to x" and y" respectively. Then,

fX” (an 9) (Q,H.J‘Z)—n[?e—[n(in—;t)z-l—(n—l)sg{]fmrz
frn(y™0) — (2mo?)=n/2e (D207
= 1

if and only if (z,,s%) = {yn, s3.). Thus, (X, S2) is a minimal
sufficient statistic for (i, o?).
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6.1 Population and Random Sample

6.2 Sampling Distribution of Sample Mean
6.3 Sampling Distribution of Sample Variance
6.4 Student’s t-Distribution

6.5 Snedecor's F Distribution

6.6 Sufficient Statistics

6.7 Conclusion J
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Conclusion

e The basic idea of statistical analysis is to use a subset
or sample information to infer the knowledge of the data
generating process.

e In this chapter, we have introduced some basic concepts
and ideas of statistical theory, including the concepts of
population, random sample, data set, statistic, parame-
ter and statistical inference.

e We examine in detail the statistical properties of two im-
portant statistics—sample mean and sample variance es-
timators, establishing the finite sample distribution the-
ory for them under the assumption of an IID normal
random sample.
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Conclusion

e This finite sample theory highlights the importance of
the Student-¢ and F' distributions in statistical inference.

e Finally, we introduce the concept of sufficient statistic
and discuss its role in data reduction. The sufficiency
principle best captures the essential idea of statistical
analysis, namely, how to most efficiently summarize the
observed data in inference of the population distribution
or population parameter.
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Conclusion

e How useful is the sufficiency principle in Big data anal-
ysis?

e What are other methods/techniques for data reduction?

— Principal component analysis (PCA)

— Factor analysis
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Thank You !
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